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1. Introduction

Coastal wetlands, both tidal and non-tidal, are composed of forested
and woody shrub wetlands (e.g. swamps and mangroves) as well as
emergent herbaceous vegetation, often referred to as marshes. These
systems offer a plethora of important ecosystem services that include
maintaining water quality, providing habitats for a variety of terrestrial
and aquatic wildlife, storing carbon and mitigating against floods and
coastal erosion (Mitra et al., 2005; Mitsch and Gosselink, 2007). Coastal
wetlands produce and store organic carbon well in excess of ecosystem
respiration and are considered critical sites for carbon burial, under-
scoring their significant contribution to carbon biogeochemistry in the
coastal zone (Chmura et al., 2003; Mcleod et al., 2011). Along the
northern Gulf of Mexico coast, Louisiana has one of the largest expanses
of coastal wetlands, fed by the Mississippi River and its distributaries
(i.e. the Atchafalaya River and Wax Lake Outlet). The Mississippi river
has the seventh largest global water discharge and suspended load
(Milliman and Meade, 1983; Meade, 1996), delivering sediment and
organic detritus to these coastal wetlands. The annual quantity of se-
questered C in the soil profile by vertical accretion is 2.96×106 metric
tons, partially offset by losses of 1.86×106 (DeLaune and White,
2012). Despite the importance of Louisiana's wetlands, both locally and
globally, their balance and sustainability has been altered as a con-
sequence of natural processes and anthropogenic activities during the
last century. A peak rate of wetland loss occurred in the 1970s at
10,200 ha year−1 (Barras et al., 2003) contributing to a total loss of
4833 km2 of marsh coverage, equitable to 25% of Louisiana's coastal
wetlands (Couvillion et al., 2017). The marshes have been observed to
be particularly vulnerable to loss due to their fragmented and isolated
stands (Couvillion et al., 2016).

One detrimental influence upon the wetlands has been the

limitation of over bank flow and sediment delivery to coastal wetlands
due to the construction of flood control levees along the lower
Mississippi River (Twilley et al., 2016). This has been exacerbated by
canal construction, that has changed local wetland hydrology, com-
bined with an increase in saltwater intrusion and wave erosion caused
by relative sea level rise (Boesch et al., 1994). By the end of the century,
sea level rise scenarios project between 218,897 ha and 587,527 ha of
wetland will be lost in coastal Louisiana if lowest sea level rise scenarios
or highest sea level rise scenarios are realized, respectively (Glick et al.,
2013). The future of Louisiana's coastal wetland is dependent on whe-
ther sediment delivery from river discharge and organic accumulation
are sufficient to sustain and allow wetland accretion at a rate as fast or
faster than sea level rise (Paola et al., 2011). Provided that sufficient
sediment is delivered into the wetlands during natural hydrologic
conditions, soil elevation gain due to mineral (i.e. sediment deposition)
and organic (i.e. plant production) accretion will contribute to land
building and wetland expansion. This is currently occurring at the Wax
Lake and Atchafalaya deltas; examples of progradational deltaic wet-
lands accreting at rates greater than sea level rise due to riverine se-
diment delivery (Roberts et al., 2003; Bevington et al., 2017). The
impacts of reduced sediment inflow into the wetlands from the Mis-
sissippi River and sea level rise have been exacerbated by subsidence of
the coastal zone as a result of the extraction of subsurface petrochem-
icals in the Gulf of Mexico (Morton et al., 2002, 2006). Episodic hur-
ricanes and tropical storms in the region can cause wetland loss due to
erosion (Barras, 2005) but they also deliver offshore sediments into
coastal wetlands (Turner et al., 2006; Bevington et al., 2017). However,
the long-term contribution of hurricane derived sediments to deltaic
wetlands in the Wax Lake Delta was estimated to be only 22% of the
long-term contribution of large river floods (Bevington et al., 2017),
underlining the importance of riverine sediment in enabling the
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wetland to maintain pace with sea level rise.
Given the importance of these coastal wetlands and the challenges

that they face, reliable maps of the distribution and structure of wetland
vegetation are of paramount importance. The wetlands of the United
States are mapped as part of the National Oceanic and Atmospheric
Administration (NOAA) Coastal Change Analysis Program (C-CAP da-
taset), produced in five-year intervals for the conterminous United
States using Landsat 30m pixel maps of coastal regions. The most re-
cent C-CAP dataset (2010) was assessed to have an overall accuracy of
84% (McCombs et al., 2016). In addition, the U.S. Fish and Wildlife
Service's National Wetlands Inventory (NWI) program has produced
wetland maps for the conterminous United States. This has an effective
date of the mid-1980s for states within the contiguous U.S, updated at a
rate of 5% per year during the 1990s and which is currently reduced to
a rate of 2%. These maps assign classes based on environmental setting
by broadly defining and segregating wetlands based on salinity and
water flow. This classification follows the A-16 land cover theme of the
National Spatial Data Infrastructure (NSDI), mapping imprecise eco-
tones opposed to the explicit distribution of land cover type. This yields
a higher ecological resolution at the expense of spatial resolution and
the explicit extent of the marsh and forested wetlands. Recent maps
distinguishing tidal marsh from non-tidal marsh extent only were at-
tained by Byrd et al. (2018) by updating the C-CAP dataset and sub-
sequently mapping an extent of 2228.7 km2, while Couvillion et al.
(2016) assessed the fragmentation of Louisiana coastal marshes. Using
time-series Landsat data from 1985-2010, Couvillion et al. (2016) de-
rived an aggregation index by assessing the pixels adjacent to vegetated
pixels, revealing a decrease in aggregation in the marshes through time,
particularly among the fragmented intermediate, brackish and saline
marsh. Other more specific attempts at mapping the wetlands of Loui-
siana's wetlands have been in localized studies, focused on the com-
parison of remote sensing techniques (Ramsey and Laine, 1997) or
quantifying post-hurricane changes in vegetation cover (Ramsey et al.,
1997), without generating detailed land cover products. One of the
aims of this study was to attain the definitive extent of the herbaceous
marsh and forested wetlands in southeastern Louisiana.

Remote sensing provides a means of mapping and characterizing
wetlands, which can be inaccessible or time consuming to document
through field studies alone. The current rate and variety of remotely
sensed data is unprecedented with freely available multispectral data
available at 10m spatial resolution. This is providing the opportunity to
map wetland extent at high-resolution, although this has not yet been
achieved for coastal Louisiana. Previous studies (Couvillion et al.,
2016) have relied upon coarser imagery in order to benefit from the
temporal resolution from successive sensors that have collected ima-
gery over decadal periods, yet there is the opportunity to increase the
accuracy of such datasets by using higher-resolution imagery and to
begin a new time-series initiative that will be facilitated by forthcoming
planned continuation missions. Existing maps of marsh extent have not
utilized object-oriented methods that represent groups of pixels as
meaningful parcels of land cover, despite their benefits of reducing
pixelated noise in classifications and providing contextual information
to the classifier (Gibbes et al., 2010; Blaschke, 2010). Similarly, in-
creasingly popular machine learning algorithms that rely on fewer as-
sumptions than existing algorithms have not been used to classify the
Louisiana wetlands despite the demonstrated accuracy of their results
(Fernández-Delgado et al., 2014). We aim to demonstrate the use of
high-resolution imagery within an object-oriented machine learning
approach for the mapping and classification of wetland extent. Coupled
with field data, we use remote sensing to build upon the existing body
of literature (Darby and Turner, 2008; Day et al., 2001; Hoeppner et al.,
2008; Martin and Shaffer, 2005; Sasser et al., 1995) to provide wall-to-
wall estimates of wetland coverage and biomass for southern Louisiana.

Estimations of AGB in southern Louisiana have primarily utilized in
situ field plot data alone and the use of remote sensing has been limited.
This has provided knowledge of species-specific patterns of AGB in

discrete locations across Louisiana's coastal marshes but have not
yielded single continuous wall-to-wall maps (DeLaune et al., 1979;
Darby and Turner, 2008; Hopkinson et al., 1978; Day et al., 2001;
Hoeppner et al., 2008). Field data has been coupled with remote sen-
sing data but has either provided regional AGB estimates at very coarse
resolution (Ghosh et al., 2016) or has focused on specific wetland types
alone (Byrd et al., 2018). The ability to estimate AGB across the whole
wetland is increasingly important as since 2017, coastal wetlands have
been included in the Agriculture Forestry and Other Land Use (AFOLU)
sector of the national greenhouse gas (GHG) inventory, following
guidelines in the Intergovernmental Panel on Climate Change (IPCC)
2013 Wetlands Supplement (Hiraishi et al., 2014). Consequently, the
carbon stock and changes in wetlands must be accounted for, across five
carbon pools, including aboveground biomass. This accounting is ag-
gregated into three tiers that range in complexity from the calculation
of C emissions based on the area of loss multiplied by an emissions
factor (tier 1), through to dynamic mechanistic-based models of CO2-C
emissions and dissolved organic carbon (DOC) export (tier 3). The
combination of field and remotely sensed data, therefore, provides a
potentially viable way of satisfying these requirements to inform a GHG
inventory for the conterminous U.S.

2. Study site

The study area was confined to the Atchafalaya and Terrebonne
coastal basins of Southern Louisiana within the Mississippi River Delta
(MRD) floodplain (Fig. 1). The Mississippi Delta formed as a series of
overlapping lobes over the past 6000–7000 years and consists of two
physiographic units, the Deltaic plain to the east and Chenier plain to
the west. The deltaic plain contains the Atchafalaya River, a major
distributary of the Mississippi River that dominates the study site and
which terminates at the Wax Lake and Atchafalaya deltas (Roberts,
1997). These deltas receive water and sediment discharge from the
Atchafalaya River, which is maintained at 30% of the combined dis-
charge of the Mississippi and Red Rivers. This discharge is managed by
the U.S. Army Corps of Engineers at the Old River Control Structure.
Atchafalaya Delta is regularly dredged for navigational purposes but
Wax Lake Delta (WLD) has been left to accrete with little anthropogenic
intervention. Subsequently, Wax Lake Delta is an excellent example of a
prograding young deltaic system with prodelta deposits and subaqu-
eous expansion first observed in 1952 (Wellner et al., 2005).

Herbaceous wetland vegetation in the Mississippi deltaic plain has
previously been divided into nine vegetation types, differentiated by
salinity (Visser et al., 1998). Alternatively, Sasser et al. (1996) describes
five floating and one non-floating habitats based upon buoyancy dy-
namics, substrate characteristics and dominant vegetation, composed of
45 species within saline, brackish and fresh water marshes. Common
species identified in the study area are Spartina alterniflora, Spartina
patens, Avicennia germinans, Juncus roemerianus, Distichlis spicata, Pa-
nicum hemitomon, Sagittaria lancifolia and Zizaniopsis miliacea. Tree
species are also present in the delta where cypress-tupelo swamps are
dominated by Taxodium distichum (L.) Rich. baldcypress and Nyssa
aquatica (L.) water tupelo. Additional woody species present are Salix
nigra (L.), S. interior Rowlee and Populus heterophylla (L.) (Doyle et al.,
1995).

3. Datasets

3.1. Sentinel-2

European Space Agency (ESA) Sentinel-2 data was downloaded
from the USGS Earth Explorer platform. Sentinel-2 is a 13-band optical
sensor that covers visible, near infrared and shortwave portions of the
electromagnetic spectrum. The data is available as band dependent 10,
20 and 60m resolution with a 290 km field of view. Sentinel-2 data is
available via two platforms offering repeat pass data viewed at the same
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angle every 5 days. A cloud free scene covering the entirety of the study
area was acquired on September 8, 2017, during the period of seasonal
peak biomass. The scene was acquired as 8 subsets and was corrected
using the Dark Object Subtraction (DOS) algorithm using the Semi-
Automatic Classification plugin (Gongedo, 2016) within QGIS. The
scenes were mosaicked and then subset to the parish boundaries of St.
Mary and Terrebonne.

3.2. Field data

A total of 15 wetland sites including forested wetlands (6 sites) and
herbaceous wetlands (9) were selected across the Wax Lake/
Atchafalaya delta complex (total of 8 sites) and West Terrebonne (total
of 7 sites). Ten out of the 15 selected sites are part of the Coastal
Reference Monitoring System (CRMS, Steyer et al. (2003)). Forested
sampling sites were less accessible and were confined to the Wax Lake
delta with the exception of one site that occurred at the location of a
CRMS station. Two field campaigns (May and August 2015) were
conducted to capture seasonal changes in biomass over the summer
growing season, particularly for emergent herbaceous wetland sites.
May is considered early phase of the growing season, whilst Au-
gust–September, at the end of the growing season but before senes-
cence, is considered the period of peak biomass. In forested sites,
sampling was only conducted during May since changes in tree wood
growth are very small and are difficult to detect over the four-month
seasonal interval from May to August. At the forested wetland sites,
duplicate circular plots (10m radius; 50m apart) were established in-
side the forest approximately 30m from the edge. All trees with dia-
meter at breast height (dbh, 1.3m) ≥2.5 cm were measured within
each plot and identified to species. The dominant species were willow
trees, with lesser occurrences of baldcypress and maple. The height of
all trees was measured with a laser range finder (Impulse 200 LR, Laser
Technology Inc., Tucson, WY). Published species-specific allometric
equations were used to estimate aboveground biomass (AGB) using
Chojnacky et al. (2013) for willow and Jenkins et al. (2003, 2004) for
baldcypress and maple. At the herbaceous wetland sites, a transect was

established perpendicular to the wetland edge and AGB was harvested
inside duplicate plots (0.25m−2; 5m apart) established at 10, 50, and
100 m from the wetland edge. All AG plant material within each plot
was clipped at their base to the ground level, stored in plastic bags and
refrigerated before being transported and processed in the laboratory.
Fresh plant material was initially sorted by species and subsequently
dried for 72 h at 60 °C and weighed to obtain biomass. Aboveground
biomass was expressed in g/m2.

4. Methodology

4.1. Land cover classification

To classify wetland coverage within the St. Mary and Terrebonne
parishes from Sentinel-2 imagery, four vegetation classes were chosen
based upon the land cover types that could be differentiated in the
Sentinel-2 imagery. Individual species and vegetation structural types
could not be differentiated as they occurred in mixed stands that were
below the pixel resolution of the imagery. This was confirmed through
reference to the Coastal Reference Monitoring System (CRMS; Steyer
et al. (2003)). Vegetation surveys at these locations revealed dominant
and co-dominant species were able to account for almost equal pro-
portions of cover. As the land cover and not species composition of the
marsh was of interest, the marsh was represented as a single class. A
forest class was included to account for the woody tree and shrub ve-
getation present. Additional classes of water and a joint class of un-
consolidated sediment and impervious surfaces were also used. Water
was masked using the Enhanced Vegetation Index (EVI) using a
threshold of 0.1 but was included as a class to account for any re-
maining water pixels. The impact of tide was minimized as the imagery
was acquired during a period of peak biomass when the marsh surface
was dominated by vegetation and the presence of water in the pixels
was reduced, particularly given the typically small tidal range (30 cm).
As vegetation cover at the study site was sufficient enough to be sam-
pled during a period of minimum biomass (May), by the summer (peak
biomass) the increased vegetation cover limited the presence of any

Fig. 1. Location of the study sites in the Atchafalaya and Terrebonne basins in southern Louisiana. Insets are field photographs of the typical vegetation found at the
study site. (A) An example of Spartina which is common throughout the wetland. (B) An example of the dense cover and heterogeneity of the herbaceous marsh. (C)
An example of floating vegetation at the study site.
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water in the pixels. Agricultural areas were manually digitized and
masked from the scenes prior to classification.

The Sentinel-2 imagery was segmented using the algorithm outlined
in Clewley et al. (2014) within the Remote Sensing and GIS Library
(RSGISLib, Bunting et al. (2014)) python module. The algorithm utilizes
k-means clustering and iterative elimination of objects below a user
defined size (10 pixels) to form image objects. The Sentinel-2 imagery
was reprojected to a geographic coordinate system with a pixel spacing
of approximately 5 m. This was done to aid the segmentation as the
land cover types in the region often formed very small stands that were
below the minimum segment size threshold (10 pixels). In order to
avoid reducing the minimum object size so that it would yield a pixe-
lated result, resampling the image allowed the minimum object size to
remain high whilst capturing isolated portions of land cover. The re-
sultant segmentation had an associated raster attribute table (RAT) that
was populated with the mean input variable values. All of the Sentinel-
2 reflectance bands, excluding the water vapor and cirrus bands were
used as input variables. All of the near-infrared bands in the image were
included as variables to determine whether a portion of the spectrum
was most beneficial for classifying vegetation in this environment. To
collect training samples, the segmentation was converted to a vector
and was overlain over Google Earth imagery in QGIS. For each land
cover class, image objects were selected and assigned a training class
value. A total of 852 samples were chosen, distributed among four
classes of woody vegetation (235), herbaceous vegetation (484), water
(100) and bare earth/urban (33). The selection of the training polygons
were selected using Google earth very-high-resolution imagery and
with reference to the CRMS online database. All classes were readily
separable in very-high-resolution imagery given the different structures
of the vegetation types. These objects were subsequently rasterized and
populated into the segmentation using the modal pixel value per object.
This ensured that the majority training class value was assigned to the
correct object, reducing the risk of incorrectly labeling a training object.
None of the field collected samples were used as training inputs as in-
formation collected at a given plot could not be guaranteed to be re-
presentative of the entire associated image object. As a consequence of
the marsh class being composed of a heterogeneous mixture of her-
baceous species and vegetation structures, a non-parametric machine
learning classifier was used. A Random Forest classifier was selected,
having been demonstrated to out-perform other machine learning

algorithms for remotely sensed datasets (Fernández-Delgado et al.,
2014). The python scikit-learn (Pedregosa et al., 2011) implementation
of Random Forests and open-source Geographic Object-Based Image
Analysis (GEOBIA) approach used, is demonstrated in Clewley et al.
(2014). An optimizer was used to derive the Random Forest parameters
(1000 trees, 3 maximum features) which yielded an out-of-bag (oob)
score for the classification of> 0.9. To validate the map, 1400 points
were manually verified against high-resolution Google Earth imagery.
Given the large area of the marsh and the forest classified, 500 points
were validated for each vegetated class alongside 300 for the water
class and 100 points for the unconsolidated/artificial surface class.

A comparison was made between the Sentinel-2 classified coverage
and that of the NWI (2013) and C-CAP datasets (2010) which represent
two of the most widely used datasets of Louisiana wetland extent. The
NWI dataset is classified into the three classes of (1) Freshwater
Forested/Shrub wetland, (2) Freshwater Emergent wetland and (3)
Estuarine and Marine wetland. In order to form a comparison with the
Sentinel-2 classification, the Freshwater Emergent wetland and
Estuarine and Marine wetland classes were merged into a single marsh
class. Similarly, the C-CAP classes were reclassified by merging palus-
trine emergent wetland, grassland and estuarine emergent wetland into
a herbaceous vegetation class while palustrine forested wetland, pa-
lustrine scrub/shrub wetland and deciduous forest were merged into a
single forest class. This reduced all of the classes in the existing maps
into two categories representing woody and non-woody vegetation, for
comparison with the Sentinel-2 classification. Given the different
methods and resolutions used to derive the NWI and C-CAP datasets
compared to the 2017 Sentinel-2 classification, a change map was not
derived, however the existing maps were used as reference datasets to
compare against our updated extent and to visualize where the greatest
differences in the datasets occurred, highlighting areas of greatest po-
tential change.

5. Results

5.1. Land cover map

The land cover map represents the most up-to-date extent of marsh
and forested wetlands within the St. Mary and Terrebonne parishes of
Southern Louisiana (Fig. 2). Forested wetlands were mapped within a

Fig. 2. Classification of coastal wetlands at the
St. Mary and Terrebonne parishes, southern
Louisiana from Sentinel-2 imagery. Woody and
herbaceous vegetation dominate the western
and central Wax Lake Delta and Atchafalaya
Delta whilst herbaceous vegetation occupies
the eastern portion of the study site and extend
seawards. Among the herbaceous vegetation
are levees covered by woody vegetation that
line channels and the islands of the deltas.
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region north of the Wax Lake Delta and extended inland eastwards
across the study site. The marsh dominated the southern and western
portion of the study site. The Terrebonne parish had more marsh cov-
erage than the St. Mary parish, where the coastal marsh occurred as a
narrow band close to the coast. Conversely, the marsh coverage within
the Terrebonne extended much further seaward and became frag-
mented into small isolated patches. Wax Lake Delta and Atchafalaya
Delta were composed primarily of marsh with some areas of forested
wetland. The marsh was the most dominant vegetation type covering
1751.4 ± 211.3 km2 (59%) of the 2970 km2 of vegetated area in the
two parishes, excluding non-vegetated land cover types. Forested wet-
lands were almost as abundant, covering a total area of
1218.7 ± 149.9 km2 (41%). The additional classes of Water and Bare
surfaces accounted for 309.3±6.75 km2 and 30.3 ± 10.27 km2, re-
spectively. The map was assessed to have an overall accuracy of 90.5%
(Table 1), with a quantity disagreement of 0.02 and allocation dis-
agreement of 0.06. Quantity and allocation disagreement are indica-
tions of inaccuracy in terms of the area classified (quantity) and the
spatial distribution of the inaccuracy (allocation), as outlined by
Pontius and Millones (2011). Low quantity and allocation disagreement
values support the overall accuracy of the classification. The error es-
timated for each class area was calculated following Olofsson et al.
(2014).

Generated from higher resolution imagery, the Sentinel-2 derived
wetlands extent map resolves a greater level of detail than that mapped
in existing products. This provided a greater level of detail in a region
which is a complex heterogeneous mixture of wetland vegetation types
containing stands that were previously below available image resolu-
tion (i.e. Landsat). For instance, this was evident along the tree covered
levees that border distributary channels and the deltaic islands (Fig. 3),
which are often at or below the resolution of Landsat and were either
poorly represented or omitted from existing maps. The total extent and
distribution of the forested wetlands within these parishes has subse-
quently been unknown. As a result of this study their total areal extent
is known, as well as their distribution among the wetlands, detailing the
size and number of the stands, revealing the variation in structure of the
vegetation across the parishes. It also enabled the fragmented wetlands
in the Terrebonne parish to be more accurately defined as the boundary
between the vegetation and the water was more readily separable.
Knowledge on the extent of the marsh in these regions is critical, given
their low elevation and increasing fragmentation and loss. This was a
consequence of the effective 100m2 pixel area of Sentinel-2 in com-
parison to coarser 900m2 Landsat pixels. This increased spatial re-
solution offers a substantial improvement over existing maps as not
only is the coverage of the wetlands updated, but the coverage of each
class is better defined. This is exemplified in Fig. 3 that compares the
Sentinel-2 wetlands map with that of the existing National Wetlands
Inventory (NWI).

The Random Forest algorithm implementation determines the im-
portance of the input variables in terms of their influence upon the land
cover classification (Table 2). The most important variable was the blue
band, closely followed by the shortwave infrared band. The near-in-
frared and red edge bands were ranked among the least important
bands and were interpreted to be correlated with one another. To test

this, the algorithm was run again with only one near-infrared band but
the importance of the variable in the classifier remained low.

5.1.1. Comparison with existing wetland extent
A comparison between the NWI dataset and the Sentinel-2 classifi-

cation is given in Fig. 4 and a comparison between the C-CAP and
Sentinel-2 classification is given in Fig. 5. Differences between the da-
tasets are expected, given the temporal range over which the datasets
were produced and the different methods used for each. For example,
estuarine wetlands were classified as such in C-CAP data on the criteria
that total vegetation coverage was greater than 80%. This threshold can
severely affect the coverage of the wetlands that C-CAP reports. The
greatest difference between the existing maps and Sentinel-2 classifi-
cation was in the extent of the marsh. The Sentinel-2 derived extent is
much smaller than the NWI and C-CAP extents, particularly in the
eastern portion of the study site. This difference was recognized as
water in the sentinel-2 imagery and either removed by the watermask
or classified as water, despite the imagery being collected during a
period of peak biomass. This smaller extent is also visible on the sea-
ward margins throughout the marsh. While the reasons for these dis-
crepancies are unclear, they may be attributed to a potential loss in
marsh, given that the differences are much greater than can be ac-
counted for by the difference in pixel size. Furthermore, the classifi-
cation accuracy was high, reducing the likelihood that this was due to
classification error. The difference in marsh extent was considerably
greater in the NWI than C-CAP dataset, particularly in the fragmented
wetlands in the Terrebonne parish. Conversely, the Sentinel-2 derived
extent is greater at Wax Lake Delta and Atchafalaya Delta, where the
islands of the deltas are mapped in greater numbers and size than in
previous datasets. This may represent the growth of the prograding
deltas over time. The Wax Lake Delta and Atchafalaya Delta are not
wholly included in the NWI dataset and are classified as unconsolidated
sediment in the C-CAP dataset, which contribute to differences in marsh
extent at these locations. Furthermore, the higher resolution Sentinel-2
map increased the quantity of forested wetlands, particularly in the
parish of St. Mary, along the levees that line the distributaries in the
marsh. These differences do not represent changes in the marsh with
certainty, given the different methods and datasets used in their crea-
tion, but highlight that differences between the existing maps and the
Sentinel-2 derived classification exist. Nevertheless, given the dynamic
nature of the wetlands, differences due to potential changes in extent
and composition must be considered. The differences between the areas
of the classes are given in Table 3.

5.1.2. Biomass
Emergent herbaceous (onset and peak biomass season) marsh and

forested wetland biomass estimates were achieved by aggregating the
field sampled species into marsh and forested classes and averaging the
biomass values. The small quantity of field sites prevented robust re-
lationships between the field data and remotely sensed data being de-
veloped. The class averaged biomass values were applied to the corre-
sponding class based on the land cover classification. This was exported
to create a biomass density map for both May and September and was
subsequently converted to a total quantity of biomass. The average
biomass estimates in May for the herbaceous and woody classes were
381.83 g/m2 and 22,702.3 g/m2, respectively. The marsh wetland bio-
mass densities increased in September to 797.69 g/m2. The same woody
vegetation measurements were used for both seasons, thus no increase
in biomass was observed. The increased biomass values in September
account for a larger total biomass (29,064,201.3Mg) in the two par-
ishes over May (28,335,916.6Mg). The complete biomass statistics per
class per season are provided in Table 4.

The total biomass of the forested wetlands was substantially larger
than that of the herbaceous marsh area, given the much greater struc-
tural aboveground biomass of the trees and shrubs and the almost
equitable area of the two classes within the study site. As expected, the

Table 1
Accuracy of 2017 Sentinel-2 land cover map.

Water Marsh Bare Forest User (%)

Water 17 4.14 0 0.29 79.33
Marsh 0.07 33.5 0.14 2 93.8
Bare 0.21 0.21 6.71 0 94
Forest 0 2.43 0 33.29 93.2
Producer (%) 98.35 83.16 97.92 93.57 90.5

Accuracy (%) 90.5

N. Thomas, et al. Int J Appl  Earth Obs Geoinformation 80 (2019) 257–267

261



biomass of the herbaceous marsh was greater at the end of the growing
season in September than in May, increasing by 108.9% over the
growing season. The biomass estimates at each of the herbaceous
sample sites is provided in Table 5, for both May and September, de-
monstrating the increase in average biomass for all except one plot
location. The standard deviation values for the herbaceous and woody
classes in May were 143.1 g/m2 and 16,872.9 g/m2, respectively. The
September sampling of herbaceous aboveground biomass had a stan-
dard deviation of 248.1 g/m2.

6. Discussion

6.1. Wetland extent

The Sentinel-2 derived land cover map provides the most up-to-date
and detailed map of wetlands extent for southern coastal Louisiana
within the parishes of St. Mary and Terrebonne. Land cover mapping of
these wetlands has not been achieved at high spatial resolution over a
geographical area as large as two parishes. Sentinel-2 imagery enabled
a more detailed estimate of wetland area to be derived than from ex-
isting coarser maps of extent, to be used as a baseline for mapping
subtle changes in the wetland extent as a consequence of loss events
(e.g. hurricanes), or the increased progradtion of the deltas through

Fig. 3. Greater detail classified in the Sentinel-2 land cover map than existing national wetlands inventory (NWI) dataset at numerous locations across the study site.
Forested wetlands are classified in more detail in the Sentinel-2 imagery than NWI dataset, alongside substantial differences in the extent of the herbaceous marsh. A,
C and E are examples of the NWI map and B, D, and F demonstrate the increased detail classified at the same locations from Sentinel-2 imagery.

N. Thomas, et al. Int J Appl  Earth Obs Geoinformation 80 (2019) 257–267

262



sediment accumulation and organic matter production. The detection of
these changes in coarser Landsat imagery may only be visible over a
longer observation period due to the lower pixel resolution. The higher
resolution also enabled smaller forested stands to be classified, parti-
cularly among the marsh wetland and along the leveed areas and pro-
grading deltas. These forested patches are not represented well in ex-
isting datasets which are based upon coarser imagery, thus providing a
less accurate extent map and class area estimate. The knowledge of such
intricate details also provides additional important information, as the
forested patches among the relatively newly formed deltas demonstrate
that woody vegetation has become established in an otherwise dynamic
region of the wetland. This reveals the high variability in the structure
of the vegetation across the wetland, which was previously not known.
This study provides more recent maps of wetland extent at higher re-
solution than available datasets such as the NWI and C-CAP land cover
maps. Our study does not provide the same level of class specific in-
formation as these, but as such existing datasets are limited by being
more broadly defined, composed of different vegetation types combined
into single classes based on environmental conditions (e.g. salinity),
based on the A-16 land cover theme of the NSDI (Cowardin et al.,
1979). Our approach separates the woody from the herbaceous vege-
tation providing more accurate class extents at the expense of in-
formation on the surrounding environmental setting, thus providing a
more detailed and accurate estimate of herbaceous marsh and forested

wetland extent.
Here we provide a tractable means of attaining an independent up-

to-date map of wetland coverage using a machine learning algorithm
facilitated by a suite of open source data, software and tools. As an
openly available dataset, Sentinel-2 was well positioned for mapping
wetland extent in southern Louisiana, following examples of its use at
other wetlands worldwide (Chatziantoniou et al., 2017; Pereira et al.,
2017; Kaplan and Avdan, 2017). The 5-day return acquisition period for
Sentinel-2 has the potential to allow the assessment of changes from
episodic events (i.e. hurricanes and river floods) in this region, as well
as providing a dense image archive to detect changes over longer per-
iods, such as a result of sea level rise. As part of a constellation, imagery
can be acquired at an unprecedented rate, providing the opportunity for
a data-rich monitoring system of these important and dynamic wet-
lands, despite the occurrence of cloud cover. Furthermore, at Louisiana
the large Sentinel-2 swath width was able to image the study site in one
scene, negating the requirement to correct for temporal differences
between adjacent scenes as with Landsat (Roy et al., 2016). Previous
mapping efforts have contributed significant knowledge on wetland
extent by measuring loss from published baselines and through using
classification approaches and the visual interpretation of changes from
existing land cover products (Barras et al., 2003; Day et al., 2000;
Couvillion et al., 2011). Here, an object-oriented approach with a ma-
chine learning classifier differentiates our work from existing methods
of estimating wetland extent, at the landscape scale. The ability to form
image objects was beneficial in mapping the marsh extent by reducing
pixelated noise and representing continuous land cover types as a single
object. The use of Sentinel-2 within this approach was particularly ef-
fective at delineating the tree stands that lined the levees among the
marsh and leading edge of the deltaic islands. In combination with a
machine learning algorithm such as a random forest classifier, which
relies on fewer assumptions of the training data than other parametric
classifiers, we were able to achieve a classification accuracy in excess of
90%. The Random Forest classifier was able to represent multiple
spectral classes under a single class label, which was particularly useful
for combining heterogeneous pixels composed of many species into a
single class. Our novel approach in the realm of applied earth ob-
servation for Louisiana's coastal wetlands can be readily exercised at
any coastal region worldwide.

Changes in the wetland extent from existing maps could not be

Table 2
The importance of each variable within the random forests classifier, as de-
termined by the algorithm.

All variables Score Selected variables Score

Blue 0.189 Shortwave infrared 2 0.246
Shortwave infrared 2 0.180 Blue 0.246
Red 0.128 Shortwave infrared 0.146
Shortwave infrared 0.116 Red 0.127
Green 0.097 Green 0.114
Red Edge 1 0.061 Near infrared 0.071
Coastal 0.055 Coastal 0.049
Narrow near infrared 0.047
Near infrared 0.047
Red edge 2 0.044
Red edge 3 0.035

Fig. 4. Wetland area differences at the St.
Mary and Terrebonne parishes, Louisiana be-
tween 2013 NWI and 2017 Sentinel-2. The red
symbolizes marsh classified in the NWI dataset
but not in this study. Blue represents additional
marsh classified in 2017 Sentinel-2 imagery.
Greens are marsh and forest classified in both
datasets. Cyan is previously classified forest
which is now classified as marsh (2017). The
magenta is the inverse of the cyan. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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reliably inferred although there are potential reasons for the observed
differences in the Sentinel-2 classification. The large area of marsh
mapped in the NWI/C-CAP dataset, but not classified in the Sentinel-2
map, could be due to a lack of sediment input into Terrebonne basin
since it is disconnected from the river, causing the potential subsequent
drowning of vegetation as the wetland is unable to accrete and maintain
its extent. Saltwater intrusion has consequently been able to occur as a
result of river abandonment and the migration of the marsh inland
(Twilley et al., 2016). This is most noticeable within the marshes in the
eastern portion of the Terrebonne Basin, where less marsh was classi-
fied around the perimeter of the isolated and fragmented marsh stands
and where previously mapped marsh was now classified as water. This
is supported by the observed decrease in aggregation amongst these
brackish and saline marshes (Couvillion et al., 2016). The greater area
of marsh classified at the deltas is consistent with increases in wetland
coverage observed over the past 50 years (Twilley et al., 2016;
Bevington and Twilley, 2018), however the majority of the additional
marsh occurred at the Wax Lake Delta and Atchafalaya Delta, which
were only partly included in the NWI datasets. The Wax Lake Delta is
included in the C-CAP dataset but as non-vegetated unconsolidated
sediment, despite being composed of both marsh and forested wetland
types. It is possible that the C-CAP dataset mapped the Wax Lake Delta
outside of the peak growing season when less vegetation was present.
This study provides the most recent and high-resolution extent of the
deltaic and coastal wetlands for this coastal area and will provide an
extremely valuable baseline from which future measures of wetland
area change can be compared to as part of the current restoration efforts
in the region. Given the role that anthropogenic activity and the effects
of climate change and sea level rise have on driving the observed loss
and fragmentation of coastal wetlands in the region (Gagliano et al.,
1981; Boesch et al., 1994; Barras et al., 2003; Couvillion et al., 2016), a
detailed baseline of wetland coverage is critical for the monitoring of its

response to restoration efforts and drivers of loss.
The coastal wetlands are comprised of a high diversity of vegetation

types (e.g. herbaceous, grasses, shrubs, trees) that form mixed or
monospecific stands of species that are below that of the comparatively
coarse Sentinel-2 pixel resolution. This reduces the ability of Sentinel-2
to represent the heterogeneity of the marsh where there are no mono-
specific stands, thus the marsh could not be differentiated into species
nor structure. A more detailed classification could be achieved through
the use of very-high-resolution hyperspectral imagery (Carle et al.,
2014), although this data is not readily available, is often limited in
extent and requires extensive preprocessing (Jensen et al., 2017).
However, the marsh and forest classes used in this study were readily
and accurately separated in the Sentinel-2 imagery due to the distinct
vegetation and plant cell structures. The reflection of near-infrared
from plants is dominated by its scattering in between the cell-wall in-
terfaces in the spongy mesophyll in addition to refractive dis-
continuities among other leaf components (e.g. protoplasts, stomata,
cell membranes), as first observed by Gausman (1977). Visual dis-
crimination between the marsh and forested wetlands was particularly
prominent in the visible and near-infrared wavelengths, but were less
discernible in the short-wave bands. This was juxtaposed with the
variable importance derived from the Random Forest algorithm. The
shortwave infrared band was the second most important variable whilst
the near-infrared bands were among the least important. This was also
true when only one near-infrared band was used, removing any po-
tential correlation between the red edge and narrow near-infrared
bands. A reason for this may be due to the higher detection of water
content by the shortwave band, over the herbaceous wetlands. These
have a less dense canopy than the forested wetlands which is dis-
connected from the flooded understory. The blue band was also deemed
to be a consistently important variable in discriminating the wetland
vegetation types. This could indicate the differences in the absorption of

Fig. 5. Wetland area differences at the St.
Mary and Terrebonne parishes, Louisiana be-
tween 2010 C-CAP and 2017 Sentinel-2. The
red symbolizes marsh classified in the C-CAP
dataset but not in this study. Blue represents
additional marsh classified in 2017 Sentinel-2
imagery. Greens are marsh and forest classified
in both datasets. Cyan is previously classified
forest which is now classified as marsh (2017).
The magenta is the inverse of the cyan. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Table 3
Comparison between marsh and forest extent classified in the Sentinel-2 (S2) derived map and the existing NWI and C-CAP extents.

Additional S2 marsh (km2) Omitted S2 marsh (km2) Coincident marsh (km2) Coincident forest (km2) Marsh to S2 forest (km2) Forest to S2 marsh (km2)

NWI 652 165.1 1567.5 797.7 141.7 238.3
C-CAP 526.1 109.5 1625.5 744 220.9 235.9
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chlorophyll-a between the two vegetation types. Similarly, the red band
was the third most important variable and may indicate additional
differences in chlorophyll-b also. These cannot be conclusively de-
termined without the aid of further laboratory analysis or field spec-
troscopy.

6.2. Biomass

The seasonal increase in field measured biomass (108.9%) in the
herbaceous wetland was a consequence of the vegetation attaining peak
biomass over the summer growing season. Herbaceous vegetation is at
maximum productivity during this period before senescing in late fall
and winter. A seasonal increase in herbaceous biomass of over 100% at
the sampling sites (Table 5) demonstrates the dynamic nature of these
coastal wetlands, underscoring the influence of seasonality on wetland
functioning in the region. The low standard deviation for the herbac-
eous wetland samples show little variation within the field collected
biomass, with the larger standard deviation in September over May
indicative of the increased variation in biomass during maximum bio-
mass estimates, due to the differential biomass allocation strategies at
the species level. The biomass standard deviation was large for the
forest class, which was only measured in May, owing to the large range
of values recorded in the field. The biomass values for the forest class
occurred over a range of 5180–66,080 g/m2, almost entirely within the
same species. The wetland extent was mapped in this study during a
period of peak biomass and therefore represents the maximum coverage
and biomass of the marsh during September.

Previous estimates of aboveground biomass in the region have re-
lied upon an in situ field plot sampling approach that allowed an un-
derstanding of species-specific patterns of aboveground biomass in
several locations across Louisiana's coastal marshes (Martin and
Shaffer, 2005; Sasser et al., 1996; Visser et al., 1998, 2017). Our study
builds upon this to further our understanding on the spatial distribution
of wetland biomass at the landscape level, using a combination of field
measurements and remote sensing tools over the region. Recent studies
have coupled remote sensing data with field data to model the bio-
physical attributes of the wetlands, expanding upon the use of field data
alone. In instances where this was achieved over large areas, coarse
MODIS data was used (Ghosh et al., 2016) while high spectral and
spatial resolutions (1.2m), which attain very detailed results, have been
achieved for limited extents only (Mo et al., 2018). Additional work

that has provided an updated extent of the wetland at the landscape
scale has not used imagery of as high-resolution as Sentinel-2 and has
focused on the estimation of the marsh wetland biomass, omitting the
forested wetlands in the region (Byrd et al., 2018). The use of high-
resolution Sentinel-2 imagery across a large geographical area has en-
abled a new estimation of aboveground biomass for the whole wetland
at the landscape level, that is concurrent with previously published
estimates of the wetland AGB Carpenter et al. (2007). Although we
provide class averaged estimates of biomass, which are not species
specific and do not account for the variability in biomass across the
wetland outside of two forest and marsh classes, our estimates would be
suitable for use within a framework for tier 1 reporting of GHG emis-
sions. As the first wetlands inventory accounted for C stock changes in
soil C alone, omitting the four other C pools (including AGB), this
provides a tractable means of attaining the minimum requirement of
the GHG inventory at Louisiana, which is applicable to all wetlands
within the contiguous U.S. While access to the sampling sites is chal-
lenging, this study would benefit from additional field data which may
reduce the standard error of the biomass estimations and facilitate re-
lationships with remote sensing datasets to be developed. This may
subsequently allow models of wetland biomass at a higher resolution to
be generated and advance the estimates of AGB to meet the require-
ments of tier 2/3 of the GHG inventory.

7. Conclusion

In this study we generate estimates of marsh and forested wetland
coverage and biomass within the Atchafalaya and Terrebonne coastal
basins. ESA Sentinel-2 optical imagery was classified using a Random
Forests machine learning algorithm within an open source geographic
object based image analysis (GEOBIA) approach. A total area of
2950 km2 of wetland was mapped with an accuracy in excess of 90%.
We demonstrate the greater detail attained over existing maps with
differences in coverage of 793.7 km2. Field data collected during May
and September 2015 provide seasonal mean herbaceous wetland bio-
mass densities, ranging from 381.8 g/m2 to 797.6 g/m2, respectively. A
mean woody biomass density for forested wetlands was estimated at
22,702.3 g/m2. These values yielded a 108.9% increase in herbaceous
wetland biomass over the growing season and a total wetland increase
of 728,284.7Mg for the two coastal basins. In this study we provide a
tractable and repeatable means of mapping wetland coverage and

Table 4
Total biomass content of the marsh and forested wetlands. Densities are in grams per square meter (g/m2) and total biomass is expressed in megagrams (Mg).

Herbaceous emergent Forested wetlands Observed
Wetlands (Sampled in May only) Wetland
Mean (g/m2) StDev (g/m2) Study site total (Mg) Mean (g/m2) StDev (g/m2) Study site total (Mg) Total (Mg)

May 2015 381.83 143.09 668,684.5 22,702.25 16,872.85 27,667,232.1 28,335,916.6
September 2015 797.69 248.07 1,396,969.2 22,702.25 16,872.85 27,667,232.1 29,064,201.3
Seasonal change 415.86 NA 728,284.7 0.0 NA 0.0 728,284.7

Table 5
Change in aboveground biomass (AGB) for each herbaceous marsh sampling site over the growing season (May–September).

ID Number of plots May mean biomass (g/m2) September mean biomass (g/m2) Difference (g/m2) May SE (g/m2) September SE (g/m2)

CRMS0301 1 125.96 1216.28 1090.32 0.00 0.00
CRMS0322 6 409.93 640.03 230.10 69.96 66.64
CRMS0465 6 387.29 682.60 295.31 36.39 74.95
CRMS6304 6 303.68 1015.80 712.12 100.13 92.57
Mike Island 6 347.17 612.63 265.45 27.51 107.19
CRMS0294 4 572.59 490.82 −81.77 130.85 93.33
CRMS0307 6 470.78 915.15 444.37 65.51 126.04
CRMS0411 6 260.60 591.55 330.95 19.54 36.91
CRMS0434 6 558.51 1014.40 455.89 100.13 92.57

Study site 381.83 797.69 415.86 47.70 82.71
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biomass into the future in southern Louisiana that is suitable for sa-
tisfying tier 1 requirements on the reporting of greenhouse gas emis-
sions from wetlands, as outlined by the IPCC.
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