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Novel Quantification of Shallow Sediment Compaction
by GPS Interferometric Reflectometry and
Implications for Flood Susceptibility
Makan A. Karegar1 , Kristine M. Larson2 , Jürgen Kusche1 , and Timothy H. Dixon3

1Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany, 2Department of Aerospace Engineering
Sciences, University of Colorado Boulder, Boulder, CO, USA, 3School of Geosciences, University of South Florida, Tampa,
FL, USA

Abstract Estimates of flood susceptibility and land loss in the world's coastal regions depend on our
knowledge of sea level rise (SLR) from increases in ocean mass and volume, as well as knowledge of
vertical land motion. Conventional approaches to the latter include tide‐gauge and Global Positioning
System (GPS) measurements relative to well‐anchored monuments few meters below the surface. However,
in regions of rapid Holocene sedimentation, compaction of this material can add a significant component
to the surface lowering. Unfortunately, this process has been difficult to quantify, especially for the
shallowest material above the monument. Here we use a new technique, GPS interferometric reflectometry,
to estimate the rate of this process in the Mississippi Delta and the eastern margin of the North Sea. We
show that the rate of shallow compaction is comparable to or larger than the rate of global SLR, adding 35%
and 65%, respectively, to the rate of relative SLR by 2100.

Plain Language Summary Sea level change is influenced by vertical motion of the sea surface as
well as vertical motion of the land in coastal areas. Tide gauges and GPS are two conventional approaches to
measure coastal vertical land motion (VLM). GPS conventional positioning determines the vertical
component of position changes resulting from displacements beneath the monument foundation. However,
quantifying shallow VLM that occur above the base of monument has not been possible so far. In regions of
rapid Holocene age (roughly 11,500 yr before present) sedimentation such as river deltas and coastal
alluvial plains, compaction of this material, if not countered by ongoing sedimentation, can add a significant
component to the rate of coastal subsidence. Here, we use a new technique, GPS interferometric
reflectometry, to estimate the rate of shallow VLM in two coastal regions with thick Holocene deposits, the
Mississippi Delta and the eastern margin of the North Sea. We show that the rate of VLM from shallow
compaction is comparable to or larger than the rate of sea level rise. Since many of the world's great coastal
cities are built on river deltas with comparable Holocene sections, our results suggest that estimates of
flood risk and land loss have been underestimated.

1. Introduction

The Global Positioning System (GPS) allows measurement of Earth surface displacements with submilli-
meter accuracy. This has improved our understanding of sea level rise (SLR) and coastal flood susceptibility
by correcting relative sea level change obtained from tide gauges (measured relative to the nearby land sur-
face) for the effects of nearby vertical land motion (VLM) (Becker et al., 2020; Chen et al., 2017; Karegar
et al., 2017; Wöppelmann et al., 2009; Wöppelmann &Marcos, 2016). Geodetic GPS receivers as well as most
tide gauge instruments are installed on the top of buildings or mounted to concrete pillars and masts driven
to refusal, typically more than 1–2 m depth. Thus, GPS receivers and tide gauge instruments measure VLM
that occurs beneath the base of building foundation or monument platform, ignoring deformation above
that depth. This is particularity important for tide gauges since they measure sea level change with respect
to the base of their building or monument, rather than the sea bottom. Long‐term VLM and assessment of
future flood risk and land loss may therefore be underestimated (e.g., Keogh & Törnqvist, 2019). The current
paradigm is that GPS and tide gauges sense the same VLM (Bevis et al., 2002; Bouin & Wöppelmann, 2010;
Hamlington et al., 2016; Santamaría‐Gómez et al., 2012; Schöne et al., 2009; Wöppelmann et al., 2007), in
part because shallow VLM is difficult to measure and has been thought to be negligible. Some recent
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studies have suggested that shallow compaction could be important in certain coastal areas, but
quantitative approaches have been challenging (Jankowski et al., 2017; Keogh & Törnqvist, 2019).
Here we suggest a new approach to this problem based on GPS interferometric reflectometry
(GPS‐IR) (Larson et al., 2009). We demonstrate the technique using data from the Mississippi Delta
and the east coast of North Sea, some of the world's thickest Holocene age sediment deposits and hence
experiencing high rates of relative SLR.

2. Geologic Background

Low‐lying coastal areas are susceptible to accelerating rates of SLR, especially if rates of land subsidence are
high. Flooding, wetland loss, saltwater intrusion, shoreline erosion and related economic losses are the main
negative consequences (Alam, 1996; Ingebritsen & Galloway, 2014; Milliman & Haq, 1996; Shirzaei &
Bürgmann, 2018). Natural compaction of Holocene age deposits, often amplified by peat soil oxidation
due to surface water drainage, is one of the main processes that causes coastal subsidence. Subsidence rates
can exceed 10–20 mm/yr depending on thickness, age and characteristics of the sedimentary sequence
(Brain, 2016; Dixon et al., 2006; Törnqvist et al., 2008; Van Asselen et al., 2011). Sediment compaction occurs
over a range of depths. Compaction of the upper 5–10 m of the Holocene substrate, here called shallow sub-
sidence, contributes significantly to the total subsidence of coastal marsh soils (Brain et al., 2012; Long
et al., 2006; Törnqvist et al., 2008). Models and data suggest that the rate of shallow subsidence can be greater
than current rate of regional and global SLR. This is especially true in coastal plains and river deltas, where
close to a billion people live (Gebremichael et al., 2018; Teatini et al., 2011). For example, the average shal-
low subsidence in the uppermost 5 m of Holocene strata in the Mississippi Delta has been estimated to be
6.4 ± 5.4 mm/yr (Jankowski et al., 2017). Despite its importance, measurements of present‐day shallow sub-
sidence are difficult to make, relying mostly on rod surface elevation table marker horizon stations
(Jankowski et al., 2017; Webb et al., 2013).

3. Technique

Geodetic GPS antennas receive two kinds of signals: strong direct signals from the GPS satellites and weak
reflected signals from the surrounding environment. Conventional carrier phase positioning uses the direct
signals to determine three‐dimensional estimates of antenna position. Here, we use the precise point posi-
tioning algorithm (Zumberge et al., 1997) implemented in GipsyX software to produce daily time series of
antennapositions relative to the InternationalGNSSService frame2014 (IGS14) (Rebischung et al., 2016) (see sup-
porting information Text S1). The vertical component of position change is attributed to displacement that occurs
beneath the structural foundation of the GPS monument and reflects deep VLM (Figure 1a). The reflected
signals travel a longer path than the direct signals, reaching the antenna later and interfering with the direct
signals. The interference signals are recorded as the receiver‐generated signal‐to‐noise ratio (SNR). The
power spectral densities of detrended SNR data include peaks with corresponding frequencies, which are
linearly dependent on the reflector height (Larson et al., 2009) (see supporting information Text S2). The
GPS‐IR method has previously been used to derive snow depth (Larson et al., 2009; Siegfried et al., 2017)
and sea level changes (Larson et al., 2013). Here, we use the GPS‐IR method for the first time to measure
height changes attributed to ground surface changes related to shallow displacements that occur within the
shallow layer between the surface and the base of the GPS monument (Figure 1a).

Resolving shallow displacements for sites with significant local vegetation is challenging because apparent
reflector height changes may be affected by changes in vegetation height associated with seasonal fluctua-
tions and/or variable rainfall (Small et al., 2010). It is important to apply masks on elevation angles and
azimuths to avoid reflections from vegetation while maintaining an adequate number of observables. We
estimated linear trends in shallow and deep VLM time series using the Median Interannual Difference
Adjusted for Skewness algorithm (MIDAS), rate uncertainties following Allan Variance of the Rate method
(AVR), and tested the statistical significance of rates with a nonparametric modified Mann‐Kendall's test
(see Text S3).

Interferometric Synthetic Aperture Radar (InSAR) is another potential technique for measuring shallow
sediment compaction and can provide important spatial detail. It is most successful in urban and suburban
areas where strong radar scatterers (e.g., buildings) exist, obviating the problem of vegetation, which can
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reduce phase coherence (Bekaert et al., 2017; Dixon et al., 2006; Higgins, 2016; Shirzaei & Bürgmann, 2018;
Teatini et al., 2011). However, the best radar scatterers in these areas tend to be buildings anchored at depth;
hence, these may underestimate shallow compaction. It is also important to recall that InSAR is a relative
technique, requiring the use of one or more reference points, such as the GPS technique described here.

4. Thickness of Holocene Sediments

Many coastal plains host river deltas that formed in the late to mid Holocene (Stanley &Warne, 1994) above
Pleistocene units that may themselves host poorly compressed sediment layers. Three‐dimensional GIS data
sets of regional Holocene geology have recently been compiled to create comprehensive map of the
Holocene‐Pleistocene surface of the Louisiana coastal plain (Heinrich et al., 2015) and the eastern margin of
the North Sea (Koster et al., 2018; Stafleu et al., 2011; TNO‐GSN, 2020). The Mississippi Delta in southern

Figure 1. (a) Schematic sketch of the stratigraphy in coastal plains and illustration of GPS installation. We make use of GPS‐IR for estimating shallow VLM, and
conventional GPS positioning for estimating deep VLM. Holocene age sediments (younger than 12 ka) underlain by Pleistocene age sediments. The thickness
of compressible Holocene sediments varies from 0 in bedrock coasts to up 150 m in deltaic coastal plains (e.g., see Figures 1b and 1c). Monuments of GPS
antenna are grounded >1–2 m below the surface within the area of thick Holocene strata with conventional GPS positioning measurements only providing a
minimum rate for VLM without distinction between VLM operating at different depths. (b) The thicknesses of Holocene deposits in the Mississippi Delta,
(c) along the eastern margin of the North Sea. Red triangles mark locations of continuously operating GPS stations used to measure shallow and deep VLM.
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Louisiana is composed of a very thick and high‐porosity Holocene sediment wedge, tied to the balance between
rates of sea level change, land subsidence, and sediment supply and deposition. Holocene deposition begins north
of Lake Pontchartrain at latitude 30.5°N, increasing seaward froma thin veneer of ~1m to a layer exceeding 100m
thickness at the coastline, and >150 m at the shelf margin (Figure 1b).

The Eastern margin of the North Sea has complex sedimentological and morphological processes, influ-
enced by tidal mechanisms of the North Sea, rivers estuaries, and a sandy coastal barrier, bounded by the
cliff coast of northern France in the south and the tip of Denmark in the north. Holocene sediments span
a 50 km wide strip along the coast with westward and northward thickening. Holocene deposits can exceed
30 m in the Rhine Delta, central Netherlands coast and along the Wadden Sea barrier islands (Figure 1c).
The Holocene sequence in the Rhine Delta is composed of river fluvial and tidal basin deposits, thickening
westward to the coastline. The sediment wedge on the central coast of Netherlands deviates from the Rhine
Delta by sea ingression and peat brook (Beets & van der Spek, 2000). The Wadden Sea is one of largest unin-
terrupted natural coastal barrier systems in the world, consisting of barrier islands, tidal plains, and salt
marshes, with most sediments imported from the North Sea. The thickness of these Holocene wedges
reaches to 50m along the barrier islands in the DutchWadden Sea (Figure 1c), diminishing northward along
the German and Danish coasts.

5. Results

We derived time series of shallow VLM at six GPS sites in the Mississippi Delta and six stations along the
eastern margin of the North Sea. Azimuth and elevation angle masks were imposed to isolate ground reflec-
tions with minimal vegetation cover from additional sources of reflection (see supporting information
Figure S1 and Table S1). The GPS sites in Grand Isle (GRIS) and Boothville‐Venice (BVHS) along the coast
of Louisiana are anchored within the thickest unconsolidated Holocene sediments in the Mississippi
Delta (~60 m thickness) at a depth of about 20 m from the surface (Figure 1b). The GPS site in
Terschelling Island (TERS) along the coast of Northern Netherlands is anchored within one of the thickest
Holocene sequences in Europe (31 m thickness) at a depth of about 15 m from the surface (Figure 1c). Rate
analysis of shallow VLM indicates that highest subsidence rates occur at sites where the Holocene sediments
are substantial. We observe a shallow rate of −5.6 ± 0.6 mm/yr at GRIS and −4.6 ± 2.7 mm/yr at BVHS,
reflecting shallow compaction at depths above 20 m. We observe a corresponding rate of −4.1 ± 1.8 mm/yr at
TERS, reflecting shallow compaction at depths above 15m. Stationswith very shallow foundation depths (smaller
than 1–2 m) show no significant shallow compaction (FSHS, MSIN, and TGBF) (Figure 2).

One way to validate the shallow rates derived fromGPS‐IR is to consider stations underlain directly by stable
Pleistocene sediment; another is to see if the shallow subsidence rates are consistent with independently
derived values from the Rod Surface‐Elevation Table‐Marker Horizon method (RSET‐MH) (Cahoon
et al., 2002; Webb et al., 2013) (see supporting information Text S4). Station ALNB in Alabama and station
ESBC inDenmark are anchored in consolidated Pleistocene age sediment at depth of 2 and 10m from the surface,
respectively, and are not affected by shallow compaction (Figure 2a).We compared ourGPS‐derived shallow rates
with the rates measured fromRSET‐MH technique in theMississippi Delta (Figures 3a, 3b, and S3). A RSET‐MH
site consists of vertical stainless steel rod attached to a benchmark hammered typically 10–25m into the substrate,
whichquantifies surface elevation changewith respect to the bottomof benchmark, and an artificial layer ofwhite
sand on the ground surface (a marker horizon) which measures vertical sediment accretion. The RSET‐MH thus
provides net surface elevation change above the base of benchmark, which is attributed to shallow subsurface
processes (Jankowski et al., 2017). Shallow rates from the RSET‐MH show qualitatively good agreement within
uncertainty to our estimates of shallow rates from GPS‐IR.

For GPS stations anchored in Holocene age sediments, the deep VLM rates reflect compaction resulting from
both lower Holocene and pre‐Holocene sediments (Figure S10), as well as deeper processes including glacial
isostatic forebulge collapse (Wickert et al., 2019), Holocene sedimentary isostatic adjustment (Kuchar
et al., 2018), growth fault movement (Shen et al., 2017), and anthropogenic movements due to fluid withdra-
wal (Dokka, 2011). The deep subsidence rate is highest on the coast of the Mississippi Delta in south
Louisiana: 6.3 ± 0.4 mm/yr (GRIS), 6.8 ± 0.4 mm/yr (LMCN), and 4.6 ± 0.6 mm/yr (BVHS). The highest
deep subsidence rate in the European study area is 1.0 ± 0.5 mm/yr (TERS). The deep subsidence rates
are significantly higher in the Mississippi Delta compared to the Rhine Delta and the east coast of the
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Figure 2. Rates of VLM for available GPS stations, thickness of Holocene sediments and depth of GPS monuments. (a) The Mississippi Delta. (b) The eastern
margin of the North Sea. Triangles represent locations of GPS sites. The orange numbers are rates of shallow VLM and their associated 1‐sigma errors. The
green numbers indicate rate of deep VLM and their associated 1‐sigma errors. The cyan numbers are sum of shallow and deep rate of VLMs (total rate). The white
pairs are values of Holocene age sediment thickness and foundation depth of GPS stations, respectively.

Figure 3. Comparison of shallow VLM from GPS and RSET‐MH in the Mississippi Delta. (a) Locations of GPS sites (red triangles) and RSET‐MH sites (yellow
circles). (b) Rates of shallow VLM from the closest RSET‐MH sites to GPS stations. Error bars are the 1σ level. The shallow subsidence rates that are based on
the empirical model prediction are grayed out. The uncertainties of GPS rates account for time‐correlated noise using the Allan Variance of rates method.
Uncertainties in the RSET‐MH rates are estimated through the linear regression and are scaled by factor 3 to approximate time‐correlated noise (e.g., Mao
et al., 1999). The GPS rates without error bar are predicated shallow rate based on linear regression model of the correlation between total VLM rates and
thickness of Holocene age sediments at GPS sites (Figure 3d). (c) Relationship between deep VLM rates and Holocene sediment thickness. (d) Total VLM rates
(sum of shallow and deep VLM rates) against the Holocene deposits thickness. (e) Shallow VLM rates versus the depth of the GPS antenna. Error bars are 1 σ.
The gray shaded area is 95% confidence interval of the regression line estimated based on 100,000 realizations of the bootstrap method accounting for
uncertainty in VLM rates (see supporting information Text S5). The red line is a fitting line based on mean of bootstrapped regression parameters. Inset are
probability density functions for Pearson moment‐product correlation coefficients estimated from bootstrap results. The red vertical dashed lines indicate 95%
bootstrapped confidence interval for correlation coefficient.
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North Sea (Figure 2), mainly reflecting the greater thickness of Holocene sediment in the former, and differ-
ent GPS foundation depths and proximity to glacial isostatic forebulge collapse. The ALNB site in the
Mississippi Delta and the LETO, VLIS, ESBC, and most likely TGDA sites on the eastern margin of the
North Sea are anchored on the stable Pleistocene surface and experience relatively slow rates of deep subsi-
dence (less than 1.0 mm/yr) (Figure 2). The deep subsidence rates on these Pleistocene‐anchored sites agree
with three recent glacial isostatic adjustment (GIA) models (see supporting information Table S2), which
would imply that GIA forebulge collapse is the dominant process contributing to deep subsidence at these
sites. However, station MARY in East New Orleans records uplift presumably resulting from deep ground-
water recharge that began in 2016 (Figure S4 and below).

VLM in the Mississippi Delta near metropolitan New Orleans, Louisiana, is affected by groundwater with-
drawal and human intervention (Dokka, 2011). Station MARY is located at the NASA Michoud facility in
Eastern New Orleans where the highest subsidence rates were reported in previous studies (Jones et al.,
2016). This site is grounded at a depth of 2000 m below the surface and is known as one of the deepest
anchored GPS sites in the world. Using conventional GPS positioning, we estimate displacements that occur
deeper than 2,000 m. The long‐term deep vertical rate is +2.2 ± 0.7 mm/yr and represents the positive
poroelastic response of ground surface to the ongoing aquifer recharge that began in 2016 (Figure S4).
The approximate 2.5 m antenna height used at station MARY allows sensing of the first Fresnel zone (ellipse
located along the satellite ground track) with maximum dimensions of 4 m by 60m. However, the vegetation
at this site is intense and is classified as short‐grass steppe. Thus, the reflector height changes include the
compound effects of ground surface motion and vegetation growth (Figure S5). We applied a strict mask
on elevation angles and azimuth to limit the reflection data to regions with minimum vegetation cover
(Figures S5 and S6). We observe a shallow subsidence rate of 2.5 ± 1.3 mm/yr, presumably mainly driven
by compaction of 16 m Holocene sediment at this site.

6. Discussion and Conclusions

The shallow subsidence rate derived from the GPS‐IR technique depends on two factors: (1) the thickness
and compressibility of Holocene sediments above the base of benchmark and (2) the depth of GPS monu-
ment. The subsidence rates in coastal plains generally correlate with the thickness of Holocene sediments
(Edwards, 2006; Horton et al., 2013; Jankowski et al., 2017; Karegar et al., 2015; Mazzotti et al., 2009). To dis-
cern the impacts of these factors, we used a nonparametric bootstrap statistical correlation analysis, taking
into account uncertainty of GPS rates (see supporting information Text S5). Station MARY was excluded
from this analysis due to effects from groundwater recharge. The deep subsidence rates derived from GPS
show moderate correlation with sediment thickness with a broad (95%) confidence interval (Figure 3c).
GPS stations anchored in Holocene sediment record the contribution of compaction occurring in sediment
below their anchoring depths, as well as contributions from deeper processes. Accounting for both shallow
and deep VLMs (total VLM), we find a strong linear relationship between the rate of total VLM and sediment
thickness with a narrow confidence interval (Figure 3d). The higher dependence of total VLM rates on
Holocene thickness suggests that (i) shallow VLM as derived by GPS‐IR is mainly caused by sediment
compaction; (ii) conventional GPS positioning underestimates the VLM since it misses shallow sediment
compaction; and (iii) regions with thicker and younger sediments experience faster subsidence. The trend
of higher total subsidence rates with thicker Holocene sediment sections appears to be true from both
alluvial and fluvial fans, although our data are limited.

The shallow subsidence rates from GPS‐IR are inversely correlated with foundation depth of the GPS sta-
tions (where known) (Figure 3d). Stations anchored at greater depths show faster shallow subsidence rates
compared to stations anchored at shallower depth, due to the greater volume of compressible sediments
above the anchor (Figure S10). However, the confidence bound is rather large because some stations (e.g.,
ALNB, MSIN, and ESBC) are grounded on consolidated Pleistocene age sediments with minimal compac-
tion. These findings also support the idea that present‐day subsidence rates in the Mississippi Delta and
along the Eastern margin of the North Sea are mainly caused by compaction of Holocene strata. It should
be mentioned that the GPS anchoring depth is not always recorded in the metadata since many of these sites
are primarily installed for surveying applications. We recommend that foundation depth be recorded for
future GPS installations.
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Given the empirical relation between the total rate of VLM andHolocene sediment thickness (Figure 3d), we
can predict the value of total VLM at three sites in the Mississippi Delta where GPS‐IR was not applicable
due to environmental considerations. Conventional positioning allows a precise estimate of deep VLM.
Thus, we subtracted the measured deep rates of VLM from predicted total VLM to estimate shallow rates
at these sites. The predicted shallow rates can then be compared with independent measurements from
the closest RSET‐MH sites (grayed stations in Figure 3b). For stations near Cocodrie (LMCN, 0369) and in
the Shell Beach area (SBCH, 4548), the GPS and RSET‐MH instruments are anchored at approximately
the same depth from the ground surface (Tables S3 and S4). The predicted shallow rates from our empirical
model agree well with measured rates from RSET‐MH within their uncertainty. However, RSET‐MH data
show slightly greater shallow rates for sites close to the ENG5 GPS station south of New Orleans. The
GPS foundation at ENG5 station is 3 m deep whereas RSET‐MH sites (3641 and 3664) are anchored at a
depth of about 25 m, thereby recoding a higher compaction rate. Unfortunately, it is not possible to evaluate
this empirical model for stations along the North Sea, because independent measurements of shallow rates
are not available at reasonably close distances to GPS sites. Nevertheless, our empirical analysis suggests that
knowledge of Holocene sediment thickness and the deep VLM rate from conventional GPS positioning is
sufficient to determine the rate of shallow subsidence in areas where GPS‐IR is not applicable due to ground
cover near the antenna.

The current deep‐seated subsidence rate of Mississippi Delta varies from 4.6 ± 0.6 to 6.8 ± 0.4 mm/yr based
on three southern delta GPS stations. The rates of VLM calculated by GPS‐IR here suggest signification shal-
low subsidence rates, up to 5.6 mm/yr in this region, nearly 3 times faster than local absolute SLR (with
respect to the center of mass of the Earth) recorded by tide gauges since 1924 (Karegar et al., 2015) and 3–4 times
greater than twentieth century rate of global mean SLR (1.1 to 2 mm/yr; Dangendorf et al., 2017). Total land
subsidence rates (sum of shallow and deep subsidence rates; Table S4) here thus range from 9.2 ± 2.8 to
11.9 ± 0.7 mm/yr, implying rates of relative SLR of up to 15 mm/yr. For the eastern coast of the North Sea and
the Rhine Delta, the deep subsidence rate is smaller than 1 mm/yr but the shallow subsidence rate is as high as
4.1 mm/yr, varying locally with sediment thickness, again exacerbating rates of relative SLR.

The contribution of VLM to sea level projection is generally limited to GIA models (Grinsted et al., 2015;
IPCC, 2014; Jackson & Jevrejeva, 2016; Slangen et al., 2014) or is locally accounted for by using tide gauges
records (Kopp et al., 2014). Shallow VLM has not typically been incorporated into sea level projection due to
lack of direct observations. Our results have important implications for sea level projection and estimation of
future flood susceptibility and land loss in deltas and other coastal regions underlain by thick sequences of
Holocene sediment. Probabilistic projections of relative SLR between the years 2000 and 2100 predict a very
likely (5th–95th percentiles) rise of 1.1–2.0 m in GRIS (Southern Louisiana), under representative concentra-
tion pathway (RCP) 8.5 global warming scenario (Kopp et al., 2014). The shallow subsidence in GRIS is com-
parable to expected rate of SLR resulting from individual contributing processes (Kopp et al., 2014; Jackson
& Jevrejeva, 2016), adding 0.56 m (median, 50% probability) rise by 2100. We estimate a very likely range of
1.6 and 2.7 m of relative SLR by 2100 under RCP 8.5 scenario (Figure S9). Station TERS (Northern
Netherlands) is expected to experience a 0.66 m (medium) SLR by 2100, with a very likely range of 0.29 to
1.12 m. The shallow subsidence at TERS results in the highest SLR projection along the margin of the
North Sea, exceeding 1.0 m (medium) by 2100. The lower and upper bounds of very likely ranges of RCP
8.5 projected SLR is expected to be 0.4 and 1.92 m, respectively. In areas of increased sediment deposition,
such as Grand Isle and Terschelling Island, rapid natural shallow subsidence adds 35% and 65% (95th per-
centile) respectively to the rate of relative SLR by 2100 (Figure S9). While these findings imply that shallow
subsidence is an important contributor to sea level projection, we note that these estimates are conservative
in terms of flood hazard in the sense that we do not consider short time scale water‐level variability due to
storm events, tidal flooding, and precipitation.

6.1. Perspective and Outlook

Our findings represent the first attempt to examine the GPS‐IR technique to quantify shallow subsidence
rates in actively subsiding coastal plains, which have important implications for the interpretation of tide
gauge records in terms of long‐term relative SLR and flood hazard. We suggest that the GPS‐IR method
should be used to quantify shallow subsidence and correct the rate of relative SLR at colocated tide gauges.
The number of GPS sites that can be used to retrieve the reflector height is currently limited by two main
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factors. First, since the primary aim of existing geodetic GPS networks is accurate positioning for geophysical
studies and/or survey engineering based on pseudorange and carrier phase measurements, the SNR
observable are not always archived in metadata associated with sites. We recommend recording SNR data
for GPS‐IR applications. Second, the GPS antenna must be located close to a fairly planar natural surface
(preferably bare ground), so that with minimum imposed azimuth and elevation angle masks, desirable
reflections from the area of interest are obtained.

In addition to correcting the rate of relative SLR, direct measurement of shallow VLM can constrain
sediment compaction models on the evolving state of accumulating sediments, potentially improving the
reliability of compaction rate prediction (Kooi & De Vries, 1998; Meckel et al., 2006). Furthermore, time
series of shallow displacement can be used to assess whether natural subsidence of deltaic sediments and
SLR is compensated by sediment accumulation. For example, construction of artificial levees, canals and
dams reduces river flooding and sediment flow onto many deltaic plains (Syvitski et al., 2009). The
GPS‐IR technique used here for measuring displacement above the base of monument or building
foundations has potential application for engineering purposes such as monitoring foundation stability.

Data Availability Statement

GPS raw data processed in this study are archived at National Oceanic and Atmospheric Administration's
Continuously Operating Reference Station (http://www.ngs.noaa.gov/CORS/), GNSS data server at Delft
University of Technology (http://gnss1.tudelft.nl/), French GPS permanent network (http://rgp.ign.fr/),
German Federal Institute of Hydrology (ftp://gnss‐gast@ftp.bafg.de/station/site), and SONEL (https://
www.sonel.org/-GPS-.html). The groundwater level data are available from the U.S. Geological Survey
groundwater information page (http://waterdata.usgs.gov/nwis). The GIA model ICE6G‐VM5a is available
from the University of Toronto database (http://www.atmosp.physics.utoronto.ca/~peltier/data.php)
(Peltier et al., 2015). Caron et al.'s (2018) GIA model is accessible online (https://vesl.jpl.nasa.gov/solid-
earth/gia/). The RSET‐MH time series can be accessed from Louisiana's Coastwide Reference Monitoring
web portal (https://www.lacoast.gov/crms_viewer/Map/CRMSViewer). We acknowledge Michiel van der
Meulen, Kay Koster, and Jeroen Schokker for sharing sediment thickness data in Europe. Holocene deposits
thickness in the Netherlands (BRO DGM v2.2) is available from the Geological Survey of the Netherlands
(https://www.dinoloket.nl/en/subsurface-models).
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