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ABSTRACT 

The future of Louisiana’s coastal cypress-tupelo forests is threatened by 

prolonged or permanent flooding during the growing season. Permanent inundation 

prevents baldcypress seedlings from becoming established. The upper limit of 

submergence with respect to adequate planted baldcypress seedling performance has not 

been effectively tested under actual field conditions. Similarly, an effective method for 

determining a site’s regeneration potential based on present vegetation attributes has not 

been developed.  

To test first-year performance of planted baldcypress seedlings under varying 

levels of submergence, I planted 900 of both 1-0 and 2-0 age-class bare-root seedlings 

across 12 different sites covering a range of hydrologic conditions and monitored their 

performance over the 2014 growing season. Water levels were continuously monitored 

for each individual seedling, and survival and height growth were documented. Due to 

their taller starting heights, 2-0 seedlings were submerged, on average, less often (1.4 

days) than 1-0 seedlings (34.8 days). Survival was high across sites for both age classes 

(79% for 1-0 and 89% for 2-0). Survival of 1-0 seedlings decreased to only 9% following 

more than 90 cumulative days of submergence. Height growth across sites was greater for 

1-0 seedlings (0.29 m) than 2-0 seedlings (0.13 m). Height growth of 1-0 seedlings 

decreased significantly following more than 30 cumulative days of submergence.  

To relate present vegetation attributes to baldcypress regeneration potential, I 

sampled the vegetation on all 12 sites in addition to using vegetation and hydrology data 

from five sites monitored by the Coastwide Reference Monitoring System (CRMS). Sites 

were separated into three categories based on how their hydrologic regime related to 
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baldcypress regeneration potential. Sites with potential for natural regeneration were 

indicated by a species-diverse overstory and a high midstory stem density. Sites with only 

artificial regeneration potential were indicated by an overstory layer consisting almost 

exclusively of cypress-tupelo and a dense midstory layer with a high percentage of stems 

rooted on elevated structures. Sites with neither natural nor artificial regeneration 

potential were indicated by an overstory layer consisting almost exclusively of cypress-

tupelo and a sparse midstory layer with a high percentage of stems rooted on elevated 

structures. 
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INTRODUCTION 

Baldcypress (Taxodium distichum) and water tupelo (Nyssa aquatica and Nyssa 

biflora) swamp forests (hereafter referred to as cypress-tupelo forests) have long 

dominated many coastal areas along the southeastern United States and its connecting 

rivers. Hydrology and its many influential facets are the main factors controlling the 

ecological dynamics of these unique systems, namely species composition, 

sedimentation, nutrient processes, and ecosystem productivity (Nyman 2011). 

Baldcypress and tupelo trees dominate wetland forest composition in Louisiana, which 

has more of this forest cover type than any other state (Conner and Day 1976). 

The functions and services that cypress-tupelo forests provide for the wetland 

forest ecosystem are numerous, and not all are known or well understood (Mitsch and 

Gosselink 2000). Cypress-tupelo forests offer invaluable wildlife habitat to numerous 

bird, mammal, fish, reptile, and amphibian species. Of major importance, both 

ecologically and economically, cypress-tupelo forests play an integral role in coastal 

protection from the damaging effects from hurricanes by absorbing heavy winds and 

water surges from the Gulf of Mexico. Cypress-tupelo forests also act as a sink for 

excessive nutrients carried by river systems, essentially intercepting them to utilize and 

store rather than being deposited into the Gulf of Mexico (Brinson et al. 1983, Nyman 

2011). Cypress lumber is renowned for its strength, durability, resistance to rot, and is a 

commonly used species for landscape mulch. The aesthetic beauties of cypress trees and 

swamps also have great historical and cultural importance to inhabitants of these unique 

forested areas. 
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Anthropogenic disturbances coupled with land subsidence have altered the 

historical hydrologic regime of an expansive acreage of wetland forests across much of 

southeast Louisiana. Urban and industrial development, oil and gas exploration, shipping, 

road construction and many other coastal activities have led to the impoundment of many 

cypress-tupelo forests and effectively isolated them from the annual flushing by fresh 

flood waters and deposition of sediment in riverine systems (Keim et al. 2006, Faulkner 

et al. 2009). Levees and water control structures have been installed to keep the water in 

the rivers and out of the floodplains to make land more suitable for development and 

agriculture, but the effects of these constructions on ecosystem function were largely 

ignored (Viosca 1928). Widespread logging took place to fuel this industrial movement, 

and vast amounts of mature cypress-tupelo forests were cleared (Mancil 1980). Following 

this large-scale logging, many of today’s stands regenerated before they were impounded 

and cut off from their historical hydrologic regime. Presently, many of these second-

growth stands have reached merchantable volumes, and land managers are assessing the 

feasibility of timber harvests. Before harvesting can be completed, land managers want to 

ensure that the stands can be logged in a sustainable manner to protect the integrity of the 

forests.  

Although many wetland forest stands presently appear adequately stocked and 

healthy, permanent inundation, where it occurs, prevents natural regeneration, resulting in 

unsustainable stands (Conner et al. 1986, Conner and Day 1988). Baldcypress is 

considered one of the most tolerant tree species to flooding and soil waterlogging 

(McKnight, et al. 1981, Hook 1984, Keeland 1994). However, baldcypress seeds cannot 

germinate in standing water; they need a dry period of several consecutive weeks to 
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germinate and seedlings require even much longer periods to reach a critical height for 

permanent establishment (Demaree 1932, DuBarry 1963, Williston et al. 1980, Conner 

and Day 1988, Pezeshki et al. 1993, Chambers et al. 2005). The best scenario for 

seedlings to become established through natural regeneration occurs on sites with slow-

moving, riverine inputs of freshwater that transports seeds away from the dense canopy 

trees to germinate in openings following drawdowns (Schneider and Sharitz 1988, De 

Steven and Sharitz 1997, Keeland and Conner 1999). However, relying on natural 

regeneration in many cases is an unsustainable practice, largely due to the stagnant nature 

of the surface water, the lack of riverine connectivity to supply frequent inputs of 

freshwater, and the limited occurrence of mineral soil exposure (Conner and Day 1988, 

Chambers et al. 2005). Germination dynamics in wetlands are very complex spatially due 

to the variable nature of water depths and flooding at different times of the year across a 

landscape. Because of the relationship between germination and water depth, natural 

baldcypress regeneration occurs more commonly at the interface between swamp forests 

and bottomland hardwood forests where flooding is less frequent, and is largely 

dependent on microsite conditions (Middleton 2000). Consequently, natural regeneration 

requirements for baldcypress under present conditions cannot be satisfied when temporal 

and spatial constraints on seedling establishment leave the forests at risk of shifting to 

another forest cover type or converting to marsh (Conner et al. 1986, Keim et al. 2006).  

According to a report produced by the Louisiana Coastal Wetlands Conservation 

and Restoration Task Force and the Wetlands Conservation and Restoration Authority 

(Coast 2050 1998), several river diversions have been proposed in southeastern Louisiana 

over the next several years, potentially impacting thousands of acres of cypress-tupelo 
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swamps. The objectives of these diversions are to increase the freshwater (harboring 

some sediment) and nutrient loads into the swamps and replace potential salinity pulses 

with freshwater, with the hopes of minimizing the current degradation and improving the 

overall health of the swamps. While it is unfeasible and unrealistic to alter all 

disconnected and impounded systems immediately, a more practical approach for 

assessing harvest potential is to determine which areas are the best candidates for 

regenerating stands of cypress-tupelo forests in their current condition and concentrate 

some effort to keeping those systems functioning. In addition, it may be possible to 

regenerate and establish some stands before the hydrologic regimes are restored or before 

a harvest occurs, thus getting an advance on the restoration process. Similarly, following 

these proposed hydrologic restoration projects, it is critical to understand and quantify the 

hydrologic regime factors affecting both natural and artificial regeneration establishment.  

With the looming uncertainty of the future of Louisiana’s cypress-tupelo forests, 

the Governor of the State of Louisiana commissioned a Science Working Group (SWG) 

on Coastal Wetland Forests to evaluate scientific information related to wetland forests 

and develop management recommendations for regeneration and utilization of coastal 

wetland forests (Chambers et al. 2005). The SWG developed three condition classes for 

regeneration (hereafter referred to as Regeneration Condition Classes or RCCs) based on 

site factors, both biological and physical, that define the potential for cypress to 

regenerate, assuming normal climatic factors.  

These Regeneration Condition Classes (RCCs) were established to promote a 

general, systematic understanding of a site’s potential for baldcypress regeneration. The 

RCC system was intentionally developed to help natural resource professionals better 
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understand the set of forested swamp conditions that restrict and control overall 

regeneration of cypress and tupelo. However, due to the variable, yearly conditions, it is 

very difficult to project long term conditions with little or no knowledge or data of each 

site’s long-term hydrologic regime. The RCC system has limited ability to assist in 

management without additional decision-making tools. Microsite variability, coupled 

with the lack of historical water level data for most areas make it difficult to assess RCC 

categorization based on knowledge offered by a single site visit. Another issue is that the 

definitions for the RCCs are based on the practicality of planting and not specific 

information on performance potential of planted baldcypress and tupelo. Without 

knowing the nature of the flood regime or various other site factors that may affect 

seedling performance, it can be very difficult to categorize an area’s regeneration 

potential. Further research to assess an area’s flood regime and potential seedling 

performance without having long-term hydrologic data is needed. 

The overall objective of the research described is to develop a system to assess 

baldcypress regeneration potential across a range of hydrologic conditions. Additionally, 

this study aims to further refine the existing SWG RCCs and simplify the application to 

current sites until more hydrologic data can be accumulated for the broader array of 

existing sites. In the short-term, this study will provide much-needed field-based data to 

natural resource professionals for consideration when making management decisions 

regarding reforestation and restoration projects. The long-term objective for this research 

is to improve our knowledge of tree establishment dynamics within coastal wetland 

forests in southern Louisiana by providing a better understanding of the relationships 

between hydrology and planted seedlings. This research will hopefully aid in developing 
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management recommendations for creating and maintaining healthy stands in 

permanently flooded cypress-tupelo forests. 
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CHAPTER 1: ANALYZING PERFORMANCE OF PLANTED 
BALDCYPRESS (TAXODIUM DISTICHUM) ALONG A 
HYDROLOGIC GRADIENT IN SOUTH LOUISIANA SWAMPS 

1.1 Introduction 

Cypress-tupelo forests comprise a vast acreage across the Gulf of Mexico and 

Atlantic coastal plains. Many of the coastal cypress-tupelo forests are at risk of 

converting to another cover type, such as shrub-scrub, marsh, or even open water because 

of unfavorable conditions for natural regeneration and successful establishment of 

baldcypress and water tupelo seedlings on the wetter end of the environmental gradient. 

Anthropogenic disturbances along with land subsidence have combined to alter the 

historic hydrologic regime in many of these forests, resulting in permanently flooded 

conditions, especially during the active growing season. 

With the looming uncertainty of the future of Louisiana’s coastal cypress-tupelo 

forests, the Governor of the State of Louisiana commissioned a Science Working Group 

(SWG) on Conservation, Protection and Utilization of Louisiana’s Coastal Wetland 

Forests to evaluate scientific information related to wetland forests and to develop 

management recommendations for regeneration and utilization of coastal wetland forests. 

The SWG developed three condition classes for regeneration (hereafter referred to as 

Regeneration Condition Classes or RCC I, II, or III) based on site factors, both biological 

and physical, that define the potential for cypress to regenerate, assuming normal climatic 

factors (Chambers et al. 2005). They are as follows: 
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RCC I: Sites with Potential for Natural Regeneration. These sites are generally 

connected to a source of fresh surface or ground water and are flooded or ponded 

periodically on an annual basis (pulsing). They must have seasonal flooding and 

dry cycles (regular flushing with freshwater), usually have both sediment and 

nutrient inputs, and sites in the best condition are not subsiding. 

 

RCC II: Sites with Potential for Artificial Regeneration Only. These sites may 

have overstory trees with full crowns and few signs of canopy deterioration, but 

are either permanently flooded (which prevents seed germination and seedling 

establishment in the case of baldcypress and tupelo) or are flooded deeply enough 

that when natural regeneration does occur during low water, seedlings cannot 

grow tall enough between flood events for at least 50% of their crown to remain 

above the high water level during the growing season. These conditions require 

artificial regeneration, (i.e., planting of tree seedlings). 

 

RCC III: Sites with No Potential for either Natural or Artificial Regeneration. 

These sites are either flooded long enough to prevent both natural and artificial 

regeneration, or are subject to saltwater intrusion with salinity levels that are toxic 

to cypress-tupelo forests. Two trajectories are possible for these two conditions: 

1) freshwater forests transitioning to either floating marsh or open fresh water, or 

2) forested areas with saltwater intrusion that are transitioning to open brackish or 

salt water. 

 

These Regeneration Condition Classes were established to promote a general, 

systematic understanding of a site’s potential for baldcypress regeneration. The RCC 

system was developed to help natural resource professionals better understand the 

forested swamp conditions that restrict and control overall regeneration of cypress and 
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tupelo. However, due to the variable, yearly conditions and little knowledge of any site’s 

long-term hydrological conditions, it is very difficult to predict long-term survival and 

growth on specific sites. In these situations, the RCC system has limited ability to assist 

in management without additional decision-making tools regarding site hydrology. 

Microsite variability, coupled with the lack of historical water level data for most areas 

make it difficult to assess RCC categorization based on knowledge offered by a single 

site visit. Another issue is that the definition for RCC II is defined by practicality of 

planting and not specific information on survival and growth potential of planted 

baldcypress and tupelo. Experts in the field developed the definitions for each RCC based 

on their experience with planting seedlings and having an estimate of their limits. The 

hydrologic threshold between RCCs I and II is relatively clear, as the definition for RCC 

I includes sites that are dry for periods of time long enough for baldcypress seedlings to 

germinate and grow tall enough to avoid prolonged periods of submergence, whereas 

RCC II includes sites where conditions are slightly more wet, but still shallow enough not 

to severely hinder survival and growth of planted baldcypress seedlings. However, the 

threshold between RCCs II and III is less clear due to the lack of knowledge of how 

planted baldcypress seedlings perform under various hydrologic regimes, especially 

under prolonged submergence. 

There have been numerous studies that examined baldcypress regeneration under 

single flooding regimes or with different flooding regimes under controlled 

circumstances. However, results and opinions tend to be variable regarding the ability of 

cypress to withstand submergence. There is a paucity of published data available on how 
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planted baldcypress perform along a quantifiable hydrologic gradient of different flood 

levels and flood periodicity during the course of a growing season.  

Conner and Flynn (1989) planted baldcypress seedlings along a flood gradient 

under a single closed canopy forest and periodically monitored water levels to analyze 

survival and growth among seedlings planted in the fall or spring, and compared 

performance among seedlings at different positions along a gradient. It would be more 

useful to have data on seedling survival and growth subjected to different types of 

flooding across several types of sites, and to have continuous water level monitoring to 

get a more accurate representation of the hydrologic conditions. Megonigal and Day 

(1992) analyzed flooding effects on baldcypress saplings. They correlated hydroperiod 

(continuously and periodically flooded) with root and shoot production, but did not 

attempt to correlate survival and growth with specific water levels.  

To simulate the effects of river diversions, Souther and Shaffer (2000) conducted 

a greenhouse study analyzing the performance of two different age classes of baldcypress 

seedlings under different levels of submergence, nutrient levels, and light. In their study, 

newly-germinated seedlings exposed for up to 27 consecutive days of submergence had 

100 percent survival, but survival quickly dropped off once submergence lasted for 45 

consecutive days or longer. Souther and Shaffer found that one year-old seedlings had 

100 percent survival when completely submerged up to 60 consecutive days, 75 percent 

survival when submerged up to 100 consecutive days, and mixed results following more 

than 100 consecutive days of submergence. Souther and Shaffer did not test the seedlings 

under actual field conditions. Subjecting seedlings to more realistic submergence from 

natural flood events would expose them to a number of additional stresses not present 
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under greenhouse conditions, thereby producing results to be more usable for interpreting 

or forecasting field performance. They also did not report height growth of planted 

seedlings following release from submergence, which is important for seedlings to 

survive into the next growing season. Seedling survival and growth in conjunction with 

different flooding depths and periodicities among different naturally-occurring flood 

regimes is needed in order to specifically identify the optimum growing conditions as 

well as the survival threshold to flooding in natural stands.  

 The objectives of this study were to evaluate the effect of submergence over the 

course of one growing season to first-year changes in planted baldcypress seedling 

survival and growth across a range of hydrologic conditions, provide recommendations 

for defining the threshold between RCCs II and III, and to develop predictive models 

across a range of submergence levels. 

1.2 Materials and Methods 
 

Study Area. An attempt was made to select four representative sites in each of 

the three RCCs proposed by the SWG (Chambers et al. 2005). Site selection was based 

on several criteria, including: overstory tree species dominated by baldcypress and water 

tupelo, apparent water level during the growing season as it related to the different 

characterizations of the RCCs, an apparent lack of salinity in both flood waters and soils, 

and access by foot or boat. Site visits were conducted in several different areas 

throughout south Louisiana in 2013 to locate suitable areas for study, namely in the 

Maurepas Swamp Wildlife Management Area (WMA) and areas within the Atchafalaya 

Basin (Figure 1.1).  
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Table 1.1. List of study sites, site indicators, percent soil carbon and nitrogen, and assumed SWG RCCs1.  

Site 
Code 

Soil % 
Nitrogen 

Soil % 
Carbon 

Assumed 
RCC1 

Key Factors for RCC Assumption 

BYI-01 1.92 26.41 I Abundance of naturally regenerated baldcypress seedlings 

STM-01 0.40 4.71 I Mineral soil with an apparent lack of surface flooding at some times  

BLR-01 1.92 28.14 I Directly connected to bayou; apparent possibility of soil exposure in normal years 

GPT-02 0.84 12.01 I Directly connected to bayou; apparent possibility of soil exposure in normal years 

GPT-01 0.78 11.66 II Impounded site with low possibility of soil exposure in normal years 

SJM-01 1.90 31.81 II Impounded site with low possibility of soil exposure in normal years 

HCN-01 1.18 16.73 II Impounded site with low possibility of soil exposure in normal years 

641-01 2.48 40.31 II Impounded site with low possibility of soil exposure in normal years 

641-02 1.25 19.99 III Dense, widespread floating mat of aquatic vegetation; apparent water levels > 1m 

641-03 1.86 28.97 III Dense, widespread floating mat of aquatic vegetation; apparent water levels > 1m 

HCN-02 2.44 38.70 III Dense, widespread floating mat of aquatic vegetation; apparent water levels > 1m 

BYP-01 0.29 3.86 III Within Atchafalaya Basin; apparent water levels up to > 3m during growing season 
1RCC I = semi-permanently flooded sites with high potential for natural regeneration success 
1RCC II = semi-permanent to permanently flooded sites with low potential for natural regeneration but high potential for artificial regeneration success 
1RCC III = semi-permanent to permanently flooded sites with low potential for both natural and artificial regeneration success 
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 Plantations (approximately 10 m by 15 m) were established by installing PVC 

stakes as seedling markers. Stakes were placed on a 1m x 1m spacing with ten columns 

and fifteen rows. Dense spacing was selected to maximize the number of seedlings that 

could fit within a canopy gap. Additionally, for the purposes of this study, I was only 

concerned with first-year survival and growth of the seedlings. With the age and size of 

seedlings planted, planting density was not a factor affecting survival and growth. Each 

plantation was divided in half by seedling age-class, with each age class planted in five 

adjacent columns. When existing roots or unmovable coarse woody debris hindered the 

placement of a stake from being placed at the correct spacing, that space was skipped and 

the corresponding stake placed at the end of the row.  

 I planted two different seedling age-classes, one year-old, non-transplanted (1-0) 

and two-year old, non-transplanted (2-0) nursery-grown bare-root baldcypress seedlings 

to analyze the performance of each when subjected to the conditions on each site. 

Seedlings were planted in February and March, 2014 (Table 1.2). Seventy-five seedlings 

of each age class were planted at each site (150 total seedlings per site). I chose 1-0 and 

2-0 bare-root nursery-grown seedlings for their affordability and likeliness to be used for 

reforestation efforts. I did not evaluate a seedling size per se or containerized seedlings in 

this study. The 1-0 seedlings were sourced from ArborGen® and grown in Shellman, 

Georgia. The 2-0 seedlings were sourced from the Louisiana Department of Agriculture 

and Forestry and grown in Monroe, Louisiana. All seedlings were delivered in mid-

January 2014 and kept in cold storage (4° Celsius) until the day they were planted. Roots 

were periodically sprayed with water to prevent dessication. Initial sorting of the 

seedlings took place to eliminate individuals that were poorly formed or much smaller in 
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diameter and total height than the average. Lateral roots were clipped the morning of or 

before planting day, leaving only the tap roots to make them easier to plant into the soft 

substrate and reduce the risk of the root systems drying out (Figure 1.4). Barton et al. 

(2000) showed that this step can make the planting process easier and more effective than 

planting with a full root system intact, with little to no difference in baldcypress seedling 

performance. Prior to transportation to the field, the seedlings were wrapped in a 

protective tarp and secured with bungee cords to ensure the root systems did not dry out 

during travel.    

Table 1.2. Date of planting in 2014, final height measurement dates, and number of 
growing days by study site.  

Site Dates Planted in 2014 Final Measurements Growing Days1 

641-01 February 2nd & 3rd October 8th 247

641-03 February 7th November 10th 276

SJM-01 February 14th October 15th 243

641-02 February 17th & 18th October 29th 253/254

HCN-01 February 21st October 13th 234

GPT-01 February 24th & 25th October 22nd 239/240

GPT-02 February 28th & March 5th October 22nd 231/236

HCN-02 March 10th November 11th 245

BYP-01 March 18th October 20th 216

BLR-01 March 21st October 15th 208

STM-01 March 24th & 26th October 6th 194

BYI-01 March 28th October 27th 213
1Growing Days = number of days between the planting date and the final measurement date. 
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planted with a dibble bar. Seedlings were randomly selected for planting; no attempt was 

made to use shorter seedlings in shallower water or vice versa. Some 1-0 seedlings were 

completely submerged at the time of planting. Once planted, seedling height and water 

depth at each seedling were measured. Height was measured from the root collar to the 

dominant apical meristem when more than one apical meristem was present. When apical 

dominance was not obvious, the most centrally located shoot was used as the apical 

meristem. Every seedling in the study was planted and measured by the same person to 

ensure consistent planting and measurement techniques.  

Following planting and measurement collection, tree shelters were placed 

around each seedling. Shelters (Protex® Pro/Gro Solid Tube Tree Protectors, Source: 

Forestry Suppliers) were used to protect the seedlings from damage by nutria (Myocastor 

coypus), an invasive mammal known to wipe out newly-planted baldcypress seedlings in 

wetland systems of the southeast coastal regions of the U.S. (Conner and Toliver 1987). 

Shelters were attached to schedule 40 PVC pipe markers 2.03 m in length (Figure 1.5). 

Shelters were fixed to the markers using black zip ties, one each on the bottom and top of 

the shelter. Identification labels were attached to each pipe, which included the site code, 

age, and tree number (1-75). 

Seedlings were re-measured in the summer (2014) for interim survival and 

height. If a seedling did not display any live foliage, it was marked as dead with an 

indication of whether the seedling appeared to have leafed out or not. The main 

objectives of this mid-season measurement were to check the condition of all plantations 

and ensure that I had data for survival and growth in the event that a disturbance was to 

decimate the seedlings at any or all of the sites.  
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individual tree identification. Canopy cover was estimated for each plantation using a 

concave spherical densiometer, with readings taken in five locations: at the center and at 

each of the four corners of the plantation. This led to considerable overestimation of 

canopy cover, since canopy outside the plantations was not excluded. I include the 

measurements only as a relative measure of surrounding canopy impact on solar radiation 

levels for the seedling within the plantations and not as direct overhead solar radiation at 

midday.  

 Water Level Monitoring. A water-level sampling well was installed at each site 

consisting of a 5 cm diameter PVC pipe, 1.5 m in length. A PVC cap was placed on both 

ends. Holes were drilled in the pipe sidewalls every 5 cm along its length. Wells were 

inserted approximately 60 cm into the soil. A HOBO® Water Level Logger (Onset®) was 

suspended by galvanized steel wire attached through a hole in the cap with a steel stopper 

crimped around the wire. Loggers were suspended approximately 30-40 cm below the 

ground surface, and depth below the soil was measured. Water level data was 

downloaded during each site visit with the HOBO® Waterproof Shuttle. Reference water 

levels were taken at the well following installation and each subsequent time data was 

downloaded. All data was processed using HOBOware software and pressure 

compensated. Water levels at each seedling were calibrated from the difference in ground 

elevation from the seedling to the well. Water levels for each seedling were summarized 

to daily mean depths by calculating the mean of all water level recordings taken during 

each day. 

 Statistical Analyses. Following data collection, all measurements were entered 

into Excel® for further analysis. From the measurements I collected and in addition to the 
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data recovered from continuously monitoring water levels, I was able to create new 

variables to describe the condition of the seedlings’ environment with respect to flooding 

(Table 1.3). To quantify flood impact on seedlings, specifically submergence, I calculated 

the number of days the water level was above each seedling’s most recently measured 

height (Hi and Hm); water levels recorded between planting date and the midseason 

measurement were analyzed using Hi, and water levels recorded between the midseason 

measurement and the final measurement were analyzed using Hm. This variable is 

calculated for each individual seedling and will hereafter be referred to as cumulative 

days submerged.  

Table 1.3. Descriptions and measurement times or formulas for variables considered in 
analysis of seedling performance.  

Variable Description 
Measurement Time 

or Formula 

Diameter (D) Diameter of seedling at the root collar Measured at planting 

Initial Height 
(Hi) 

Length from root collar to apical 
meristem (m) 

Measured at planting 

Midseason 
Height (Hm) 

Length from root collar to apical 
meristem (m) 

Measured mid-summer 
(not necessarily 
midpoint) 

Final Height (Hf) 
Length from the root collar to apical 
meristem (m) 

Measured at end of 
growing season 

Change in Height 
(∆H) 

Difference between the final and initial 
heights (m) 

∆H = Hf – Hi 

Survival 
Indication of whether or not the seedling 
was alive 

Measured at end of 
growing season   

Daily Water 
Depth (W) 

Water depth at seedling for any given 
day (m) 

Measured hourly 
during growing season 

Cumulative Days 
Submerged (x) 

Cumulative sum of days water levels 
exceeded previous height measurement 
(Hi or Hm) 

x = Frequency (Y > Hi 

and Y > Hm ) 

Canopy Cover 
(C) 

Estimate of overhead canopy cover in 
plantation 

Measured at end of 
growing season 

Growing Period 
(G) 

Length of the growth assessment period 
G = Days between 
planting and final 
measurement 
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Seedling performance was analyzed for each age-class by first separating the 

seedlings into incremental flooding categories based on the cumulative days submerged. 

Statistical differences in overall performance between age classes and performance 

between flooding categories within the same age class were determined with least 

squared means using ANOVA through Proc GLM in SAS (SAS version 9.4, SAS 

Institute©). Differences were determined significant at the alpha=0.05 level using a 

Tukey-Kramer adjustment. 

Modeling Survival. For future management applications, prediction of 

seedling survival based on known or expected water levels would help natural resource 

professionals select sites or seedlings for planting. To predict seedling survival based on 

flood impact, I used Proc Logistic in SAS to model survival as affected by cumulative 

days submerged (x) for both age classes. Logistic regressions are typically used to predict 

binary responses from binary predictors (Bishop 2006), in this case 0 = dead and 1 = 

alive. First, a logistic function was produced using the following formula: 

( ) = 11 + ( )
   Where: F(x) = probability of survival 

β0 = intercept  

β1 = slope or regression coefficient 

x = cumulative days submerged  

e = exponential function, decrease in survival probability for every increase in x 

Next, a simple linear regression was produced using a logit, or the logarithm of 

the odds of survival, using the following formula: 
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( ) = ( )1 − ( ) = +  

Where: g = logit function 

            ln = natural logarithm 

 

 Finally, I back-transformed the odds ratio by using an anti-log to produce the 

probability of a seedling surviving based on the cumulative number of days the seedling 

was submerged, including if it was never submerged at all. 

	 	 	( ) = 	1 + 	  

 

 Modeling Height Growth. Prediction of change in height (growth, if positive) or 

final heights is necessary for evaluating a seeding performance under different flood 

regimes and also for evaluating the potential for escape from submergence and survival 

for the next year. To model first-year seedling growth under different hydrologic 

conditions, I modeled the final total height of seedlings by cumulative days submerged 

(x) as well as the number of growing days (G). Initial height (Hi), initial diameter (D), 

and canopy cover (C) were significant as co-variables. I selected two different models, a 

power model and an exponential decay model, to determine which was best suited for the 

actual data. The Akaike Information Criterion (AIC) was used as the determining factor 

for model selection. AIC rewards goodness of fit and penalizes overfitting caused by 

having too many model parameters. In addition, I evaluate fit by which model has the 

lower AIC value. 
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1.3 Results  

Seedling Performance. Overall survival across sites was high for both age 

classes even though flooding was continuous on most sites. Across all sites, 1-0 age-class 

seedlings were submerged on average for much longer (34.8 cumulative days) during the 

growth assessment period than 2-0 seedlings (1.4 cumulative days). An overwhelming 

majority (83 percent) of 2-0 seedlings were never submerged during the growth 

assessment period, compared to only 10 percent of  

Table 1.4. Mean initial seedling measurements, summary statistics, and cumulative days 
flooded (± standard error) during the growth assessment period across sites by age class. 

Variable 
Age Class

1-0 2-0

Mean Initial Root Length (m) ± SE 0.13 ± 0.001 0.21 ±0.002

Mean Initial Diameter (mm) ± SE 8.50 ± 0.07 12.04 ±0.10

Mean Initial Seedling Height (m) ± SE 0.61 ± 0.002 1.10 ±0.004

Mean Final Height (m) ± SE 0.91 ± 0.008 1.23 ±0.006

Mean Change in Height (m) ± SE 0.29 ± 0.008 0.13 ±0.005

Mean Survival (%) 78.67  89.22

Mean Cumulative Days Submerged1 ± SE 34.8 ± 1.2 1.4 ± 0.2

1Cumulative days submerged = cumulative number of days water levels were above the seedling height (i.e. 
submerged) during the growing season 

1-0 seedlings. There were no 2-0 age-class seedlings submerged for more than 53 

cumulative days, but 24 percent of 1-0 age class seedlings were submerged for more than 

60 cumulative days. 
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The 2-0 age-class seedlings had significantly higher (p <0.001) overall survival 

than 1-0 seedlings. Overall first-year seedling survival was 89 percent for 2-0 seedlings 

compared to 79 percent for 1-0 seedlings at the end of the growth assessment period 

(Table 1.4). Survival for the 1-0 age-class seedlings submerged for more than 90 

cumulative days was significantly lower (p <0.001) than survival for seedlings 

submerged for less than 90 cumulative days (Figure 1.6). Only 9 percent of all 1-0 

seedlings that were submerged for more than 90 cumulative days survived, and no 1-0 

Figure 1.6. Survival of 1-0 baldcypress seedlings grouped by increasing levels of 
submergence. Significant differences at the alpha = 0.05 level are indicated by different 
letters above the bars. Sample sizes for the different submergence levels are: 0 days n = 
90, 1-30 days n = 436, 31-60 days n = 158, 61-90 days n = 141, 91-120 days n = 38, 121+ 
days n = 37. 
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seedlings survived submergence for more than 120 cumulative days. There was no 

significant difference in survival between the categories of 0, 1-30, and 31-60 cumulative 

days submerged for 2-0 seedlings (p <0.001). 

The 1-0 age-class seedlings significantly outperformed 2-0 age-class seedlings in 

height growth. Overall mean change in height across all sites was 0.29 m for 1-0 

seedlings and 0.13 m for 2-0 seedlings (Table 1.4). Change in height of the surviving 1-0 

age-class seedlings that were never submerged was significantly higher (p <0.001) than 

seedlings that were submerged for at least some period of time, and mean change in 

height was significantly lower (p <0.001) for all categories of greater than 30 cumulative 

days of submergence (Figure 1.7).  

 

Figure 1.7. Change in height and standard error bars of surviving 1-0 baldcypress 
seedlings grouped by increasing levels of submergence. Significant differences at the 
alpha = 0.05 level are indicated by letter above the error bars (SEM). Sample sizes for the 
different submergence levels are: 0 days n = 64, 1-30 days n = 397, 31-60 days n = 137, 
61-90 days n = 103, 91-120 days n = 7. 

a

b

c
c

c

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1-30 31-60 61-90 91-120

M
ea

n 
C

ha
ng

e 
in

 H
ei

gh
t (

m
)

Cumulative Days Submerged During the Growing Season



30 

Table 1.5. Growing season mean, minimum, and maximum water levels and cumulative 
days flooded at each site’s plantation1. Sites are listed by increasing mean water depth. 

1Water levels taken from April 1st to October 1st, 2014. Water levels are based on the mean well difference 
for all planted seedlings at a given site’s plantation.  

On two sites, GPT-01 and GPT-02, survival was 100 percent for both age classes, 

and one additional site, BLR-01, had 100 percent survival for 1-0 seedlings and 86.7 

percent survival for 2-0 seedlings (Tables 1.6 and 1.7). The sites with the worst survival 

were HCN-01 for 1-0 seedlings (48 percent) and STM-01 for 2-0 seedlings (35 percent). 

Among sites, the greatest change in height for 1-0 seedlings occurred at BLR-01 and 

SJM-01 (0.54 m at both), and the greatest change in height for 2-0 seedlings also  

Site 
Mean Seasonal 
Water Depth 

(m) 

Minimum 
Seasonal Water 

Depth (m) 

Maximum 
Seasonal Water 

Depth (m) 

Cumulative 
Days Flooded 
Above 0 cm  

BLR-01 0.110 -0.177 0.649 152

STM-01 0.183 -0.207 0.797 165

GPT-02 0.251 -0.236 0.852 165

GPT-01 0.322 0.058 0.854 184

641-03 0.443 0.232 0.734 184

BYP-01 0.467 0.076 1.005 184

SJM-01 0.495 0.305 0.935 184

641-02 0.522 0.339 0.910 184

HCN-01 0.587 0.423 0.876 184

641-01 0.608 0.416 0.979 184

HCN-02 0.688 0.496 1.017 184

BYI-01 0.707 0.457 1.154 184

Mean ± SD 0.449 ± .186 0.182 ± .260 0.897 ± .130 178 ± 11
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Figure 1.8. Composite hydrograph for all study sites. Period displayed is from April 1st – 
October 1st, 2014. Water levels are corrected for the average well difference of all 
seedlings at a given site. Negative values indicate the water table was below the soil 
surface. 
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Table 1.6. Summary statistics for 1-0 seedling age-class by site, listed in order of increasing mean cumulative days submerged during 
the growing season. 

Site 
Mean Initial 

Height (m±SEM) 
Mean Final Height 

(m±SEM) 
Mean Change in 
Height (m±SEM) 

Survival 
(%) 

Canopy 
Cover 
(%) 

Mean 
Cumulative 

Days Submerged 
(±SEM) 

BLR - 01 0.63 ± 0.005  1.16 ± 0.02 0.54 ± 0.02 100.0 18.67 1.48 ± 0.20

STM - 01 0.60 ± 0.006  1.02 ± 0.02 0.43 ± 0.02 53.3 66.30 1.59 ± 1.08

GPT - 02 0.62 ± 0.006 0.82 ± 0.02 0.21 ± 0.02 100.0 82.94 8.29 ± 0.21

GPT - 01 0.62 ± 0.002 0.88 ± 0.01 0.26 ± 0.01 100.0 80.03 8.73 ± 0.13

641 - 02 0.62 ± 0.006 1.00± 0.03 0.37 ± 0.03 69.3    42.80 10.19 ± 2.53

SJM - 01 0.60 ± 0.007  1.14± 0.03 0.54 ± 0.03 93.3 45.40 22.24 ± 3.43

641 - 03 0.52 ± 0.010 0.81 ± 0.03 0.24 ± 0.03 57.3 32.61 32.39 ± 1.06

BYP - 01 0.62 ± 0.004 0.70 ± 0.02 0.08 ± 0.01 98.7 70.46 53.16 ± 0.31

641 - 01 0.61 ± 0.007 0.88 ± 0.02 0.25 ± 0.02 81.3 76.91 54.44 ± 5.81

BYI - 01 0.65 ± 0.004 0.80 ± 0.01 0.15 ± 0.01 88.0 84.40 66.57± 1.31

HCN - 02 0.63± 0.004  0.90 ± 0.02 0.26 ± 0.02 54.7 31.36 73.57 ± 3.00

HCN - 01 0.59 ± 0.009  0.77 ± 0.02 0.14 ± 0.01 48.0 83.78 84.33 ± 4.53
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Table 1.7. Summary statistics for 2-0 seedling age-class by site, listed in order of increasing mean cumulative days submerged during 
the growing season. 

Site 
Mean Initial Height 

(m±SEM) 
Mean Final Height 

(m±SEM) 
Mean Change in 
Height (m±SEM) 

Survival 
(%) 

Canopy 
Cover   
(%) 

Mean 
Cumulative 

Days Submerged 
(±SEM) 

BLR - 01 1.11 ± 0.015 1.22 ± 0.02 0.10 ± 0.01 86.7 18.67 0.00 ± 0.00

STM - 01 1.13 ± 0.012 1.26 ± 0.02 0.15 ± 0.02 34.7 66.30 0.00 ± 0.00

GPT - 02 1.07 ± 0.011 1.30 ± 0.02 0.22 ± 0.01 94.7 32.61 0.00 ± 0.00

GPT - 01 1.11 ± 0.014 1.32 ± 0.02 0.22 ± 0.01 98.7 42.80 0.03 ± 0.05

641 - 02 1.13 ± 0.013 1.23 ± 0.02 0.10 ± 0.02 100.0 82.94 0.04 ± 0.03

SJM - 01 1.11 ± 0.014 1.23 ± 0.03 0.12 ± 0.02 100.0 80.03 0.05 ± 0.69

641 - 03 1.09 ± 0.011 1.21 ± 0.02 0.12 ± 0.01 98.7 83.78 0.07 ± 0.00

BYP - 01 1.10 ± 0.011 1.08 ± 0.01 -0.02 ± 0.01 97.3 70.46 0.79 ± 0.23

641 - 01 1.08 ± 0.013 1.39 ± 0.02 0.31 ± 0.02 98.7 45.40 1.24 ± 0.39

BYI - 01 1.09 ± 0.012 1.16 ± 0.02 0.06 ± 0.01 90.7 31.36 1.52 ± 1.11

HCN - 02 1.04 ± 0.012 1.12 ± 0.02 0.08 ± 0.01 74.7 76.91 2.71 ± 0.30

HCN - 01 1.12 ± 0.011 1.22 ± 0.02 0.09 ± 0.01 96.0 84.40 10.21 ± 0.07
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Figure 1.9. Change in individual seedling height for both age-classes based on cumulative 
days submerged. Negative height changes signify dieback or failure of leader. 

occurred at SJM-01 (0.31 m). The least change in height for both 1-0 (0.08 m) and 2-0 (-

0.02 m) seedlings occurred at BYP-01. 

Survival and Height Growth Models. Survival probability based on cumulative 

days submerged was modeled for 1-0 predict survival based on submergence in future 

situations. Logistic regression produced an intercept and a slope for both age-classes 

(Table 1.8), which is used to calculate the survival probability. Interpretation of the 

model reveals what appears to be a quadratic relationship between cumulative days 

flooded and seedling survival for 1-0 seedlings (Figure 1.10). Survival was high across 

the range of hydrologic conditions examined for 2-0 seedlings, so I felt it unnecessary  
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Figure 1.10. Logistic regression model results for the 1-0 age-class survival probability 
versus cumulative days submerged. Probability values are back-transformed from log 
values produced by the model. 

Table 1.8. One year-old seedling survival model parameter estimates and equations.  

Parameter Estimate/Equation

Intercept 
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to model survival probability for 2-0 seedlings based on the conditions experienced by 

individuals in this study.  

None of the 1-0 seedlings that experienced submergence for greater than 50 

percent of their growing season (cumulative days flooded/growing days *100) survived 

to the end of the study. Only seven 2-0 seedlings experienced more than 25 cumulative 

days flooded, and all survived to the end of the growing season. 

Seedling final height for each age class was modeled to predict the relative effects 

that flood impact, growing conditions, and initial seedling specifications have on seedling 

height growth in future situations. The total cumulative days submerged, cumulative days 

submerged in June and July, Cumulative days floodeded above 80 percent of the 

seedling’s initial height, mean water depth during the growth assessment period, and total 

growing season length were selected as primary variables from results of a correlation 

analysis. Initial height, initial diameter, and canopy cover were included as co-variates to 

improve model fit. The AIC values of both models tested can be found in Table 1.9. The  

Table 1.9. AIC and regression equations for the final height models for each age-class.  

Age 
Class 

Power 
Model AIC 

Exponential 
Decay AIC 

Selected Model Equation1 

1-0 -2084 -1618 
= ( . ) + ( . ) + ( . ) + ( . )+ ( . ) + ( . ) 

2-0 -2504 -2250 
= ( . ) + ( . ) + ( . ) + ( . )+ ( . ) + ( . ) 

1Independent Variables: x = cumulative days submerged during the growing season, y = cumulative days 
flooded during the growing season above 80% of the seedling’s initial height, z = cumulative days 
submerged in June and July, a = mean water depth during the growing season experienced by the seedling, 
g = growing days (i.e. growing season length) 
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Figure 1.11. The 1-0 age-class measured seedling final heights vs. predicted seedling 
final heights. Line represents a 1:1 ratio between measured and predicted.  

Figure 1.12. The 2-0 age class measured seedling final heights vs. predicted seedling final 
heights. Line represents a 1:1 ratio between measured and predicted. 
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power model proved to be a better fit according to the AIC for both the 1-0 and 2-0 

seedlings. The final height model predictions had an R2 value of 0.79 for 1-0 seedlings 

when compared to measured final height results, and an R2 value of 0.59 for 2-0 

seedlings. Graphics displaying the predicted seedling heights plotted against their 

measured final heights represent the contrast between predicted and measured heights to 

show how well the model describes the data (Figures 1.11 and 1.12). 

1.4 Discussion  

Overall Seedling Performance. Submergence, for a prolonged portion of the 

growing season, dramatically reduced seedling survival and height growth of planted 1-0 

bare-root baldcypress seedlings after certain lengths of time. Submergence was 

uncommon and therefore had less impact on the performance of 2-0 seedlings. Survival 

of 1-0 and 2-0 bare-root baldcypress seedlings was very high across most sites, averaging 

79 and 89 percent, respectively. Growth was higher, on average, for 1-0 seedlings (0.29 

m) compared to 2-0 seedlings (0.29 m).

Mortality of 1-0 seedlings was most closely associated with the number of 

cumulative days the seedlings were overtopped by flood waters (submergence). Figure 

1.6 demonstrates that following more than 90 cumulative days of submergence, 1-0 

seedling survival was only nine percent, compared to nearly 85 percent when submerged 

for less than 90 days. While 1-0 baldcypress seedlings submerged up to 90 days had 

relatively good survival until the end of the growing season, the impact of long-term 

submergence on survival into the next growing season is not well documented. Mean 

height growth with continued submergence fell rapidly across the different submergence 
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levels. Height growth was significantly higher for 1-0 seedlings submerged between 0 

and 30 cumulative days (0.37 m) compared to seedlings only submerged for 31 

cumulative days or more (0.15 m), underlining the negative effect that prolonged 

submergence has on seedling performance. The 1-0 seedlings appear to have adequate 

height growth even when flooded at some level for most, if not all, of the growing 

season. However, height growth is greatly diminished when submerged for more than 30 

cumulative days.   

 The length of time seedlings are submerged has been the focus of many previous 

controlled experiments related to baldcypress survival and growth. Early studies reported 

poor performance at relatively short submergence durations. Demaree (1932) reported 

that newly-germinated baldcypress seedling survival was very low following only 10-12 

days submergence. Bull (1949) also reported low survival thresholds following 

submergence, with 67 percent survival of 1-0 planted baldcypress seedlings submerged 

for less than 20 days, 55 percent for 1-0 seedlings submerged 20-29 days, and only 31 

percent survival for those submerged 30-45 days. However, Loucks and Keen (1973) 

reported 100 percent survival for 1-0 baldcypress seedlings submerged for 4 weeks. Sun 

(1995) reported 100 percent survival for newly-germinated baldcypress seedlings 

submerged for 0, 10, 20, and 30 consecutive days, and there was no significant difference 

between height growth for seedlings never submerged and those submerged for 10, 20, 

and 30 consecutive days. Souther and Shaffer (2000) studied the effect of submergence 

on newly-germinated and 1-0 baldcypress seedlings grown in containers, reporting that 

survival decreased greatly following 45 days of submergence for newly-germinated 

seedlings, while 1-0 seedling survival was 75 percent or greater following 100 days or 
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less of submergence. Survival results were variable following longer periods of 

submergence. Our data were collected from a relatively large sample size of seedlings 

subjected to a wide range of conditions, and our results support the evidence that 

baldcypress seedling survival is severely affected by submergence, especially for more 

than 90 cumulative days during the growing season. 

The effect of submergence on height growth for 2-0 seedlings was not as clear, as 

so few were ever submerged for an extended length of time. When planted on the same 

sites as 1-0 seedlings, 2-0 seedlings have better survival than 1-0 seedlings. Survival was 

very high for 2-0 seedlings (89.22 percent) across the range of conditions tested in this 

study. Because the 2-0 age-class seedlings were taller when planted, they experienced 

much fewer total cumulative days submerged than 1-0 seedlings. The overwhelming 

majority of 2-0 seedlings (83.7 percent) were never submerged during this study, but they 

did experience substantial water depths (>0.50 m) for prolonged stretches of the growing 

season, and their survival was noticeably high. Survival is an extremely critical measure 

of seedling performance because if a tree is alive, it has the opportunity to take advantage 

of conditions favorable to net primary production (NPP), if and when those conditions 

occur. Because they have taller starting heights than the 1-0 seedlings, 2-0 seedlings are 

less likely to be submerged and have a high survival probability.  Still, I do not know 

how well 2-0 seedlings would respond to more extreme levels of flooding, especially 

submergence, to make direct comparisons to the performance of 1-0 seedlings. Height 

growth for 2-0 seedlings was relatively low across all sites, especially compared to 1-0 

age-class seedlings. Because the overwhelming majority of 2-0 seedlings were never 

submerged during the growing season, it is more appropriate to look at the effect of 
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flooding on a different level. The benchmark of 70 percent above the initial height serves 

as an evaluation point in which to analyze growth when seedling’s foliage is subjected to 

prolonged flooding. The average midpoint of the initial crown measurement was 68 

percent of the seedling’s initial height for all 2-0 age-class seedlings, so 70 percent serves 

as a close approximation.  When flooded for 0 and 30 cumulative days above 70 percent 

of the seedling’s height, 2-0 seedlings had a mean change in height of 0.13 m. However, 

2-0 seedlings flooded for more than 30 cumulative days above 70 percent of their initial 

height had a mean change in height of only 0.08 m. 

The first-year height growth for 1-0 age class seedlings compared to 2-0 seedlings 

can be attributed to several different factors. All seedlings were trimmed of their lateral 

roots prior to planting. Therefore, the fine, lateral root systems of individuals in each age 

class was relatively similar at the time of planting, leaving the 2-0 seedlings with a lower 

root-to-shoot ratio, which has been cited as a factor affecting height growth under flooded 

conditions (Megonigal and Day 1992). Another potential differential effect on the two 

age-classes may relate to a “greenhouse effect”, as tree shelters used were made of 

polypropylene, a material noted for its ability to enhance photosynthesis in tree seedlings. 

Sharew and Hairston-Strang (2005) tested a variety of different shelters to compare their 

effects on seedling growth and reported a marked increase of seedling height growth in 

all shelters made of polypropylene compared to unsheltered control seedlings. Shelters 

0.91 m in height were used for both age classes; virtually all of 1-0 seedling crowns were 

completely surrounded by the tubes at the time of planting, and virtually all of the 2-0 

seedlings had some or all of their crowns extending past the top of the tube. Differences 

in crown environment, such as humidity and solar radiation levels, could have provided 
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the 1-0 seedlings an early advantage in height growth. Conner et al. (2000) reported 

height growth for baldcypress seedlings protected by shelters was significantly higher in 

the first year than unprotected seedlings in a South Carolina study (52 cm vs 23 cm); 

however, growth differences declined dramatically once the seedlings emerged from the 

top of the shelter.  Seedling origin or quality differences could have resulted in the 

difference in change of height; the 1-0 seedlings were sourced from ArborGen® 

(Shellman, Georgia) and the 2-0 were grown and purchased from a Louisiana Department 

of Agriculture and Forestry nursery (Monroe, Louisiana).  

Site Factors. Clear trends in seedling performance (survival and height growth) 

were related to cumulative days submerged in 1-0 seedlings; however, some variation in 

seedling performance among sites was obvious in some cases. Flooding depth, duration, 

and timing are all key factors for baldcypress seedling performance. Nevertheless, the 

interaction of factors related to sites can sometimes offset part of the outcomes in survival 

and growth. For instance, light availability has been proven to be a critical factor in the 

growth of young baldcypress (Neufield 1983, Souther and Shaffer 2000, deGravelles et 

al. 2014). There is some indication in our results that canopy cover had an effect on 

seedling height growth; however, our canopy cover estimates were taken in the fall 

between October 6th and November 10th when leaf senescence of some overstory species 

had begun to occur. Additionally, canopy cover was analyzed as a mean estimate for all 

seedlings at a given site and is therefore not representative of conditions at the individual 

seedling level.  

While water depth and duration of flooding are extremely important in 

determining survival and growth, even of flood tolerant baldcypress, the distribution of 
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flood events and distribution of high water across the growing season have also been 

shown to be important. Variation in flood timing may, in fact, have affected the degree of 

differentiation in survival or growth in our study. Microtopography within a given site 

can have a dramatic impact on individual seedling performance. Although the elevation 

within cypress-tupelo forests is usually compressed, small microtopographic changes (a 

few centimeters) are often present and can make a large difference in the number of days 

of seedling submergence. Slight changes in rainfall or planting elevation could have a 

profound difference on the cumulative days submerged for planted seedlings. 

The subsidy-stress model (Odum et al. 1979) suggests that areas experiencing 

periodic, nutrient-rich flooding could have higher growth rates compared to areas 

containing stagnant water for long durations or areas never flooded at all. Megonigal et 

al. (1997) concluded that there was no difference in rates of aboveground NPP between 

seasonally-flooded and upland forests, but they did show that there was a significant 

negative correlation between aboveground NPP and mean water depth in areas with 

prolonged flooding by seemingly stagnant flood waters. The composition of the standing 

water at each of these sites could differ in many ways because the sites in this study 

received flood inputs from different sources and at different levels of timing and 

intensity. The two sites with the largest mean change in height for 1-0 seedlings, BLR-01 

and SJM-01 (0.54 m at each), both have a direct connection to the Blind River, which 

acts as a drain for a vast area of swamp into Lake Maurepas. When the river channel 

rises, these sites receive a pulse of nutrients and sediments suspended in the water 

column. The majority of the other sites were believed to be primarily driven by local 

rainfall. The negative effect of stagnant flooding water on tree seedling growth has been 
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some sites, although not common outside of BYI-01, likely aided in the survival of the 1-

0 seedlings despite deep, prolonged flooding during much of the growing season. 

STM-01 had very low final survival rates for both 1-0 (53 percent) and 2-0 (35 

percent) seedlings, even though it was the least flood-impacted site. The site has a very 

heavy-clay soil (Sharkey series), a shrink-swell clay that has been shown to cause 

problems with seedling survival of other bottomland species (Stanturf et al. 1998 and 

2004). When the water table dropped below the soil surface, large cracks formed in the 

soil and, as a result, the root systems of some seedlings were exposed and left vulnerable 

to drying out. The survival of 1-0 seedlings that were never submerged was lower than 

mean survival for seedlings submerged between 1 and 60 cumulative days, and the 

majority of 1-0 seedlings that were never submerged were planted at STM-01. In addition 

the taller 2-0 seedlings at STM-01 had the lowest survival of any site by a wide margin.  

Although the understory at STM-01 was dominated by an invasive grass, Phanopyrum 

gymnocarpon, commonly found in bottomland forest stands, it may not have caused 

severe competition, even though it was generally taller than some 1-0 seedlings (Figure 

1.14). The height and prevalence of this grass was not nearly as pronounced in the middle 

of the growing season as it was near the end, and the grass was much more prominent in 

canopy gaps where more light was available than under heavy shade.  A study done in 

South Carolina showed 91 percent of baldcypress seedlings survived heavy competition 

from Eupatorium capillifolium (Conner 2003), emphasizing the effect that soil conditions 

at STM-01 had on seedling survival.   
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Many plantings of baldcypress will likely occur on sites conducive to planting 1-0 

nursery stock. The 1-0 stock is cheaper, easier to store and transport, and much easier to 

plant on flooded sites. The 1-0 seedling survival model helps to predict planted 

baldcypress first-year seedling survival probability based on the cumulative days 

submerged. This model is limited by the use of only one size of 1-0 planting stock and 

needs to be expanded to evaluate the effects of additional size and age classes, seedling 

sources, as well as different types of seedlings (i.e. containerized or potted). The survival 

of 2-0 seedlings was relatively high across most conditions observed in this study, 

eliminating the need to model survival and justifying the need to test for 2-0 age-class 

seedling performance for longer periods of submergence.  

The 1-0 seedling height growth model helps to predict planted baldcypress first-

year seedling final height based on the cumulative days submerged. This model is useful 

for predicting height expectations for 1-0 seedlings on sites where the hydrologic regime 

is either controlled or well-understood. Final height (not necessarily growth) was 

modeled to predict the height the seedlings will reach by the end of the first year. 

Seedling height is essential for correlating with water levels to determine the length of 

submergence that seedlings could expect to endure for the following growing season or 

seasons. Most importantly, the height growth models provide an effective first-year 

assessment for final height expectations of planted baldcypress seedlings across a wide 

range of cumulative days submerged.   

The results of the final height model indicate that the total cumulative days 

submerged over the growing season, cumulative days submerged in June and July, mean 

water level during the growing season, the cumulative days flooded above 80% of the 
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seedling’s height, and the length of the growing season were all significant factors 

affecting seedling height growth. Initial height, initial diameter, and canopy cover were 

influential to a lesser extent. These variables seemingly explained the observed height 

growth of 1-0 seedlings better than 2-0 seedlings because of the higher occurrence of 

submergence and greater variability in height growth between individuals of the 1-0 age-

class seedlings. The model appears to underestimate growth on the best-performing 

seedlings for both age-classes, but especially on the 2-0 seedlings, suggesting that there 

are factors driving height growth not associated with submergence that are not accounted 

for in the model. The inclusion of the submergence variables in the model highlights the 

notion that submergence, especially during the middle of the growing season, can have a 

detrimental effect on seedling height growth. The significance of the hydrologic variables 

that are not a direct measure of submergence (mean water level during the growing 

season and the cumulative days flooded above 80% of the seedling’s height) indicate that 

deep, prolonged flooding has a negative impact on seedling height growth even when 

flood levels do not completely submerge the seedling.  

Management Implications. Permanently flooded cypress-tupelo forests do not 

lend themselves to planting containerized seedlings in large quantities. Bare-root 

seedlings are much cheaper and easier to plant in arduous conditions that typify many 

permanently flooded sites. First-year results suggest that 1-0 bare-root nursery-grown 

seedlings can be planted successfully under certain hydrologic conditions, and they can 

grow at an acceptable level if planted on the appropriate sites. First-year survival was 

very good for 2-0 seedlings due to their lower submergence susceptibility compared to 1-

0 seedlings, but height growth was relatively poor. Within a site, efforts should be made 
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to selectively plant seedlings in spots where they are most likely to succeed, whether that 

includes avoiding planting in microtopographic low spots altogether, reserving the tallest 

individuals to be used in the low spots, or using multiple age classes to account for 

microtopographical differences. Plantings will likely perform better in areas receiving 

flood waters from riverine or alluvial inputs as opposed to more stagnant, rainfall-driven 

sites. Protecting the seedlings from nutria is paramount. Although there was no seedling 

mortality caused from nutria during the growing season while protected by shelters, 

follow-up visits in the winter and spring after shelters had been removed revealed a 

significant number of seedlings that had either been uprooted or clipped by nutria or 

rabbits.  

 Our results indicate that 30 cumulative days of submergence appears to be the 

hydrologic threshold for adequate first-year 1-0 planted baldcypress seedling survival and 

height growth. When feasible, water level monitoring should be used to evaluate the true 

hydrologic regime of a given site. Connectivity of surface water should be evaluated and 

accounted for across a site in order to understand or quantify the range of hydrologic 

conditions that seedlings would potentially be exposed to. To gain a better understanding 

of the true nature of water levels at a given site, efforts should be made to determine if 

the site is hydrologically connected to a body of water containing water level monitoring 

equipment. Monitoring across several years will provide a more accurate estimate of the 

range of hydrologic conditions across a site. These recommendations should serve as 

tools for evaluating sites based on their regeneration potential and increasing the 

probability for successful performance of planted baldcypress seedlings. 
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1.5 Conclusions 

The survival for 1-0 planted baldcypress seedlings was extremely poor following 

submergence for greater than 90 days. The first-year height growth for 1-0 planted 

baldcypress seedlings, which is critical to the seedling’s future performance, was greatly 

diminished following just 30 cumulative days submerged. Across the range of conditions 

tested in this study, 2-0 planted baldcypress survival was higher than 1-0 seedling 

survival, but height growth was much lower. Submergence of 2-0 seedlings was rarely 

observed, and the effect that submergence has on 2-0 seedling performance is not clear. 

Efforts should also be made to identify low and high spots within the 

microtopography of a site and selectively using seedlings that will be submerged less 

often, increasing the probability of seedling success. Due to permanent flooding and 

relatively static water levels at many sites classified as RCCs II and III in south 

Louisiana, a difference in elevation of only a few centimeters can potentially have a great 

impact on the cumulative number of days a seedling is submerged throughout the 

growing season. Our results suggest submergence can be overcome in many areas by 

using 2-0 or older/taller seedlings. Although this study defines hydrologic thresholds for 

first-year planted baldcypress seedling performance under closely monitored hydrologic 

conditions, accurate estimates of the number of days submerged are scarce for most of 

the cypress-tupelo forest acreage. Further research needs to be conducted to establish 

connectivity of vast acreages of cypress-tupelo forests to existing hydrologic monitoring 

stations where the hydrologic regime of a given site is unknown or not well-understood. 
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CHAPTER 2: USING PRESENT VEGETATION TO ASSESS 
LIMITED HYDROLOGICAL INFORMATION AND BALDCYPRESS 
(TAXODIUM DISTICHUM) REGENERATION POTENTIAL ALONG 
A HYDROLOGIC GRADIENT IN SOUTH LOUISIANA  

2.1 Introduction 

Cypress-tupelo forests dominate much of the forested acreage in south Louisiana. 

Widespread logging occurred near the turn of the 20th century, when many of our present 

stands germinated under much different hydrologic conditions than conditions that exist 

today (Mancil 1980). Urban and industrial development, oil and gas exploration, 

shipping, road construction and many other coastal activities have led to the 

impoundment of many cypress-tupelo stands and effectively isolated them from the 

annual flushing by fresh flood waters and deposition of sediment from riverine systems 

(Keim et al. 2006, Faulkner et al. 2009). Presently, many of these second-growth stands 

have reached merchantable volumes, and land managers are looking into the feasibility of 

timber harvests. Before harvesting can be completed, land managers want to ensure that 

the stands can be sustainable to protect the integrity of the wetland forest.  

Although many wetland forest stands presently appear adequately stocked and 

healthy, permanent inundation, where it occurs, prevents natural regeneration, resulting in 

unsustainable stands (Conner et al. 1986, Conner and Day 1988). Periodic flooding, 

although essential to baldcypress in the natural environment, has changed in many areas, 

often becoming more prolonged and deeper. Baldcypress is considered one of the most 

tolerant tree species to flooding and soil waterlogging (McKnight, et al. 1981, Hook 

1984, Keeland 1994). However, baldcypress seedlings cannot germinate in standing 
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water; they need a dry period of several consecutive weeks just to germinate and much 

longer periods to reach a critical height for permanent establishment (Demaree 1932, 

DuBarry 1963, Williston et al. 1980, Conner and Day 1988, Pezeshki et al. 1993).With 

the looming uncertainty of the future of Louisiana’s cypress-tupelo forests, the governor 

commissioned a Science Working Group on Conservation, protection, and Utilization of 

Louisiana’s Coastal Wetland Forests (SWG) to evaluate scientific information related to 

wetland forests and develop management recommendations for regeneration and 

utilization of coastal wetland forests (Chambers et al. 2005). Although the SWG 

produced a number of findings and presented a number of recommendations, one of the 

most important statements was that “regeneration is a critical process of specific concern 

in maintaining coastal wetland forest resources.” The SWG developed three Regeneration 

Condition Classes (RCCs) based on site factors, both biological and physical, that define 

the potential for cypress to regenerate. They are as follows: 

SWG Regeneration Condition Class I (RCC I): Sites with Potential for Natural 

Regeneration. These sites are generally connected to a source of fresh surface or 

ground water and are flooded or ponded periodically on an annual basis (pulsing). 

They must have seasonal flooding and dry cycles (regular flushing with 

freshwater), usually have both sediment and nutrient inputs, and sites in the best 

condition are not subsiding. 

 

SWG Regeneration Condition Class II (RCC II): Sites with Potential for Artificial 

Regeneration Only. These sites may have overstory trees with full crowns and 

few signs of canopy deterioration, but are either permanently flooded (which 

prevents seed germination and seedling establishment in the case of baldcypress 

and tupelo) or are flooded deeply enough that when natural regeneration does 

occur during low water, seedlings cannot grow tall enough between flood events 
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for at least 50% of their crown to remain above the high water level during the 

growing season. These conditions require artificial regeneration, (i.e., planting of 

tree seedlings). 

SWG Regeneration Condition Class III (RCC III): Sites with No Potential for 

either Natural or Artificial Regeneration. These sites are either flooded long 

enough to prevent both natural and artificial regeneration, or are subject to 

saltwater intrusion with salinity levels that are toxic to cypress-tupelo forests. 

Two trajectories are possible for these two conditions: 1) freshwater forests 

transitioning to either floating marsh or open fresh water, or 2) forested areas with 

saltwater intrusion that are transitioning to open brackish or salt water. 

These RCCs were established to promote a general understanding of a site’s 

potential for baldcypress regeneration. The RCC system was intentionally developed to 

help natural resource professionals better understand the set of forested swamp conditions 

that restrict and control overall regeneration of cypress and tupelo. However, due to the 

variable, yearly conditions and little knowledge of any site’s long-term hydrological 

conditions, it is very difficult to predict long-term survival and growth on specific sites. 

In these situations, the RCC system has limited ability to assist in management without 

additional decision-making tools. Microsite variability, coupled with the lack of historical 

water level data for most areas make it difficult to assess RCC categorization based on 

knowledge offered by a single site visit. It is often difficult for natural resources 

professionals to make multiple site visits during the growing season to determine RCC 

classification. There is a great need to be able to assess a site’s hydrologic regime, 

especially as it relates to baldcypress regeneration potential, using a combination of 
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present vegetation and site factors to avoid the time and costs that accompany 

conventional methods of long-term hydrologic monitoring. 

The relationship between flooding and vegetation responses has been well 

documented over the years. Several studies have analyzed the forest composition of 

expansive gradients ranging from bottomland hardwood systems down to cypress-tupelo 

swamps. When viewed in its entirety, a flooding gradient can often be separated into 

several distinct communities based on species’ relative abilities to tolerate flooded 

conditions. In some cases, the effect of flooding on vegetation composition and structure 

along an elevation gradient is quite distinct and obvious (Theriot 1993). However, 

because cypress-tupelo forests comprise such a narrow portion of a very complex matrix 

of hydrologic conditions, our understanding of these forests as it relates to vegetation 

establishment and growth remains limited.  

Vegetation has been used as an indicator for moisture and successional stages in 

upland settings to great success (Curtis and McIntosh 1951, Johnson et al. 2007).Very 

few studies have been conducted on the use of present vegetation as an indicator for 

predicting an area’s flood regime. Cowardin et al. (1979) designed a widely used 

classification system for the various types of wetlands found in the world, centering on 

substrate type and vegetation as an indicator. However, their study’s focus was too broad 

to capture the necessary precision of differences in water depth along a hydrologic 

gradient to distinguish between RCCs II and III sites in cypress-tupelo wetlands.  

 Bedinger (1971) determined four distinct forest communities along the White 

River in Arkansas based on elevation, and therefore being subjected to differences in 

flood regimes. However, he focused on classifying bottomland hardwood communities 
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and did not include cypress-tupelo forests. Theriot (1993) developed a system to use 

present woody vegetation to predict the flood regime in bottomlands and wetlands and to 

determine the optimal hydrologic regime for several different tree species. Theriot’s 

study covered a wide variety of flooded sites, but did not look at the closer division 

across cypress-tupelo dominated sites. In addition, his study used only two sites from 

Louisiana. Bledsoe and Shear (2000) analyzed the vegetation along different gradients, 

including a hydrologic gradient, to correlate species’ responses to flood frequency, but 

did not include permanently inundated sites that are of great concern regarding 

baldcypress regeneration.  

Faulkner et al. (2009) attempted to use remote sensing technology to categorize 

different sites into RCCs by comparing aerial photos from drought and flooded years. 

Their study involved comparing aerial imagery of the same area during an abnormally 

dry year and during an abnormally wet year. Faulkner et al. then classified certain areas 

as RCC I based on having dry ground during both the wet and dry years, RCC III based 

on water present during both the wet and dry years, and RCC II for all areas that were 

wet in the wet year but dry in the dry year. Their method is useful for large-scale 

estimates, but remains unsatisfactory for small-scale analysis and does not take into 

account the fact that many of these sites can potentially shift from one classification to 

another due to sedimentation or salinity pulses.  Unfortunately, they were not able to 

effectively differentiate the division between RCCs II and III solely via aerial imagery. In 

order to accurately characterize sites with recent changes, the method relies on having 

both a very wet and very dry year in a short time-frame, which is not always a possibility. 
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While many sites can be evaluated in general, selection of specific sites are a challenge 

because of clouds and other factors that preclude analysis from specific sites. 

  No studies were found that attempted to characterize a site’s present vegetation 

and structure as indicators of its flood regime within the cypress-tupelo forest portion of 

the wetland forest moisture gradient, particularly with respect to a site’s suitability for 

supporting baldcypress seedlings. Assessment of the flood regime is critical for 

evaluating whether existing cypress-tupelo forests can regenerate either by natural or 

artificial means. Assessment of flood regimes is important for ongoing forestry practices, 

especially harvests, and for regeneration and restoration projects. It is important to begin 

the process by developing a conceptual and descriptive relation between the composition 

and structural characteristics for sites with short-term and long-term water level data. 

The primary objective of this study is to relate forest composition, forest 

structural characteristics, and other site factors to assess the flood and likely impacts to 

the potential initial survival and establishment of natural and planted baldcypress 

seedlings. 

2.2 Materials and Methods 

Study Area. In southeast Louisiana swamps, I selected 12 representative sample 

sites in each of three apparent Hydrologic Categories similar to the aforementioned SWG 

RCCs along a gradient of flooding conditions where cypress or tupelo are dominant 

members of the overstory. Sites included freshwater forested wetlands with surface 

flooding for less than half the growing season (Hydrologic Category A); semi-

permanently to permanently flooded areas with relatively shallow water levels 
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(Hydrologic Category B); and permanently flooded sites with relatively deep water levels 

(Hydrologic Category C). Hydrologic Categories were used for site classification in place 

of the SWG RCCs to potentially expand the application of information beyond 

baldcypress regeneration purposes. Still, the underlying principles of each of the three 

Hydrologic Categories were developed to correspond with the three RCC definitions. Site 

selections were based on several basic criteria, including: cypress or tupelo trees as the 

dominant species, apparent average water level during the growing season as it related to 

the different characterizations of the SWG RCCs, and an apparent lack of salinity in both 

flood waters and soils.  

Vegetation Sampling. Potential sample locations were located after a general on-

site visit to several areas to assess whether they met the basic criteria. A 200 m x 200 m 

study site was remotely delineated in each area using Google Earth. Study areas were 

delineated to include a uniform space consistent with the desired type of forest to be 

sampled. Five sample plots were chosen at each study site. Locations of plot centers were 

determined using Google Earth; 30 m x 30 m grids were laid upon each of the 12, 200 m 

x 200 m study areas. Each intersection of the grid was numbered and put into a random 

number generator. The first five numbers produced by the random number generator and 

their corresponding points on the grid were selected as plot centers at each site. At each 

site, the centers of each of the five sample plots were located using a GPS unit and 

marked with a PVC pipe. I sampled both the overstory and midstory vegetation layers at 

each plot center. Each vegetation layer shared the same plot center (i.e. midstory layer 

plots were nested within the larger overstory layer plots). The overstory layer was 
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sampled within a 10 m radius plot (314 m2) and the midstory was sampled within a 5 m 

radius plot (78.5 m2).  

 The overstory layer included measurement of all trees ≥10 cm diameter at 3 m 

to achieve a consistent diameter measurement and avoid any sampling error caused by 

pronounced butt-swell common to many wetland tree species (Parresol et al. 1987). A 3 

m pole was held parallel to the trunk of the tree for accurate determination of the 

diameter measurement reference point. Overstory tree diameters were measured with a 

Wheeler Pentaprism Caliper (JIM-GEM®). The midstory layer included all trees 1.0 to 

9.9 cm diameter at breast height (DBH), or 1.37 m with Vernier Calipers. Canopy cover 

estimates were also taken on each plot with a concave spherical densiometer; four 

readings were taken 10 m from the plot center in the four cardinal directions and the 

mean was then calculated for each plot.   

 Water Level Monitoring. A well was installed at each site consisting of a 5 cm 

diameter PVC pipe, 1.5 m in length. A PVC cap was placed on both ends. Holes were 

drilled in the pipe sidewalls every 5 cm along its length. Wells were inserted 

approximately 60 cm into the soil. A HOBO® Water Level Logger (Onset®) was 

suspended by galvanized steel wire attached through a hole in the cap with a steel stopper 

crimped around the wire. Loggers were suspended approximately 30-40 cm below the 

ground surface, and depth below the soil was measured. Water level data was 

downloaded during each site visit with the HOBO® Waterproof Shuttle. Reference water 

levels were taken at the well following installation and each subsequent time data was 

downloaded. All data was processed using HOBOware. Water levels at each plot were 

calibrated from the difference in ground elevation from the plot center to the well. Water 
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levels for each plot were summarized to daily mean depths by calculating the mean of all 

water level recordings taken during each day. 

2.3 CRMS Sites 

In 2003, the Coastwide Reference Monitoring System (CRMS) was established 

in Louisiana to monitor and evaluate the effectiveness of wetland restoration projects at 

many different spatial scales along the Louisiana coast (Steyer 2003). Sites included for 

monitoring include brackish, saline, intermediate, and freshwater marshes, as well as 

forested swamp sites. Forested swamp sites were used to monitor the conditions before 

and after river diversion projects to develop goals for future diversion projects.  

To supplement our data, especially with data from sites on the drier end of the 

cypress-tupelo forest hydrologic gradient, I used data collected on forested swamp sites 

by CRMS. I selected five forested swamp sites based on similar basic criteria used for 

selecting our own sites.  

CRMS data collection for both vegetation and hydrology was similar to data 

collected for our sites, and is outlined in full detail in Folse et al. (2014). Although the 

CRMS data set and our data set are similar, some differences existed in the diameter 

parameters for each layer and in the sizes and quantity of plots. CRMS data were made 

compatible to our data by first selecting all individuals in the CRMS dataset that were 

sampled in the overstory layer and were greater than 5 cm and less than 10 cm diameter 

sampled and moved them into the midstory data. Next, I took the number of species that 

were subtracted from the overstory layer and adjusted their total midstory density on a 

proportional basis to the percentage of the area that the midstory plots comprised of the 
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overstory plots. These adjustments allowed trees on the CRMS sites to be analyzed in the 

same manner as our study site data. I also excluded any stems smaller than 1 cm at DBH. 

Data Summarization.  Data for both our sites and the CRMS sites were 

summarized by the following categories: seasonal mean water level, minimum water 

level, maximum water level, mean cumulative days flooded above 0 cm, 15 cm, 30 cm, 

45 cm, 60 cm, and 75 cm; mean canopy cover; overstory basal area/hectare; midstory tree 

density/hectare; number of woody species/hectare; and the top three species based on 

importance value.  

The reference points or benchmark water levels between 0 cm and 75 cm were 

used to calculate cumulative days flooded because they could represent critical 

benchmarks affecting the success of seed germination, seedling establishment, and 

artificial regeneration survival and/or growth typical of 1-0 seedlings, respectively. 

Nursery-grown 1-0 bare-root baldcypress seedlings typically range between 30-60 cm in 

height, and submersion of seedlings, both planted and newly-germinated, has a negative 

impact on their first-year survival and growth (Souther and Shaffer 2000, Rutherford and 

Chambers, Chapter 1). Therefore, evaluating different water levels as they relate to 

different seedling height stages is critical for assessing potential regeneration success The 

cumulative days flooded above each benchmark water level was calculated by adjusting 

the site’s water levels by the mean well difference at each of the plot centers (5 plots for 

each of our sites and 3 plots for each of the CRMS sites). Only water level data from 

April 1st to October 1st, 2014 was analyzed, effectively defining a 184 day growing 

season (actual growing season differs substantially across years). This 184 day window 
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was selected because it was the longest period of time where I had water level data for 

each of the study sites.  

Sites were first classified into their respective Hydrologic Categories (A, B, or 

C) by their hydrologic regime as it relates to baldcypress regeneration potential. Sites

with fewer than 120 cumulative days flooded above 0 cm were classified as Category A, 

sites with 120 cumulative days flooded or more above 0 cm but fewer than 30 days 

flooded above 45 cm were classified as Category B, and sites with 30 cumulative days 

flooded or more above 45 cm were classified as Category C. These benchmarks were 

chosen as thresholds between categories for a conservative estimate of the requirements 

for natural germination and establishment of baldcypress seedlings (< 120 cumulative 

days of surface flooding, Souther and Shaffer 2000) and for adequate performance of 

planted baldcypress seedlings (< 30 cumulative days flooded above 45 cm, which is the 

typical height for 1-0 bare-root nursery grown baldcypress seedlings, Chapter 1). Of the 

17 sites (ours plus the CRMS) included in our analysis, three were classified as 

Hydrologic Category A, eight were classified as Hydrologic Category B, and six were 

classified as Hydrologic Category C. 

Mean canopy cover is the mean of the canopy cover estimates across all plots 

on a given site. Overstory basal area per hectare and midstory tree density per hectare 

were calculated by totaling the individual overstory tree basal areas across all plots on a 

given site and scaling up to a per hectare level. The number of woody species is the total 

number of individual species or species group (i.e. undistinguished multiple species of 

wet site oaks, Quercus spp., or tupelos, Nyssa spp.) measured on a site regardless of 

canopy layer. Vegetation and hydrologic characteristics between Hydrologic Categories 
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were tested for significance with ANOVA using Proc GLM in SAS®. Least-square means 

were used to account for variances in sample sizes between Categories. Significance was 

determined at the alpha = 0.05 level using a Tukey-Kramer adjustment. 

The principal species or species groups for the overstory layer were determined 

using importance values (IVs). IVs, which range from 0 – 100, are calculated using a 

species’ relative dominance (relative basal area), relative density, and relative frequency 

at a given site as shown below. The top three species or species groups by IV in the 

overstory layer and the three species or species groups with the highest relative density in 

the midstory layer were included as the primary species for each site. 

	 	 	 	 = 	 	 	 		 	 	 	 	 	100 

	 	 	 	 = 	 	 		 	 	 	 	100 

	 	 	 	 = 	 	 	 	 		 	 	 	 	 	 	 	100 

	 	 	 	 = 	 + 	 + 	300
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2.4 Results 
 

 Sites were differentiated by a combination of flood regime characteristics for 

the single season for which water level data were available. A significant difference in 

mean cumulative days flooded above 0 cm and 15 cm existed among Hydrologic 

Category A sites and Hydrologic Categories B and C sites combined (Figure 2.1 and 

Table 2.1). A significant difference across the mean cumulative days flooded above 30 

cm, 45cm, and 60 cm also existed between Hydrologic Category C sites and Hydrologic 

Categories A and B sites combined. In addition, there was also a significant difference 

among sites in all three Categories relative to the seasonal mean and maximum water 

levels. Finally, a significant difference occurred in the seasonal minimum water level 

between Hydrologic Category C sites and Hydrologic Categories A and B sites 

combined. 

 

Figure 2.1. Mean cumulative days flooded above benchmarks ranging from 0 cm to 75 
cm for all seventeen sites grouped by Hydrologic Category. Values and standard error 
bars are derived from all sites within a given Hydrologic Category. 
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Table 2.1. Mean water levels and mean cumulative days flooded for selected benchmark flood heights within hydrologic categories. 
Values include the mean and standard error (±) from all sites within a given Hydrologic Category. Values were analyzed using an 
ANOVA with the least-square means from each of the sites within a given Hydrologic Category. Statistical differences between 
categories at the alpha = 0.05 level are indicated by different superscript letters. 

Hydrologic 
Category 

Min Water 
Level 

Mean 
Water 
Level 

Max Water 
Level 

Days 
Above1   
>0 cm 

Days 
Above 
>15 cm 

Days 
Above 
>30 cm 

Days 
Above 
>45 cm 

Days 
Above 
>60 cm 

Days 
Above 
>75 cm 

A 
-0.34 ± 0.04

a
 0.01 ± 0.03

a
 0.51 ± 0.09

a
 84 ± 11

a
 39 ± 8

a
 15 ± 6

a
 4 ± 2

a
 0 ± 0.3

a
 0 ± 0

a
 

B 
-0.07 ± 0.07

a
 0.23 ± 0.03

b
 0.70 ± 0.02

b
 170 ± 6

b
 131 ± 19

b
 58 ± 16

a
 14 ± 2

a
 6 ± 0.7

a
 1 ± 0.5

a
 

C 
0.30 ± 0.07

b
 0.54 ± 0.05

c
 0.91 ± 0.05

c
 184 ± 0

b
 182 ± 2

b
 168 ± 11

b
 133 ± 16

b
 61 ± 24

b
 23 ± 11

a
 

1Days above refers to the cumulative days flooded above the given reference heights from April 1st to October 1st, 2014, a 184 day growing season. 
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The number of species/species groups per hectare was significantly different 

among the vegetation characteristics at alpha = 0.10, with Hydrologic Category C sites 

having a statistically significant (Pr > |t| = 0.09) lower mean number of species or species 

groups per hectare (3.7) than sites in Category A (7.7) (Table 2.3). Mean canopy cover 

was very similar among Hydrologic Categories, with means of 92 percent for Hydrologic 

Category A, 86 percent for Hydrologic Category B, and 86 percent for Hydrologic 

Category C. Mean overstory basal area per hectare also did not differ significantly among 

Hydrologic Categories, with 38.5 m2 ha-1 for Hydrologic Category A, 32.9 m2 ha-1 for 

Hydrologic Category B, and 33.7 m2 ha-1 for Hydrologic Category C. The overstory 

species composition varied among categories, with a mix of Taxodium distichum, Acer 

spp., Fraxinus spp., Nyssa spp., and Triadica sebifera in Category A, Nyssa spp., 

Taxodium distichum, and Acer spp. dominating Category B, and primarily Taxodium 

distichum and Nyssa spp. dominating in Category C. 

Midstory density was significantly lower at alpha = 0.10 for Category C (P > |t| 

= 0.06), with only 325 trees per hectare (TPH) compared to 1344 TPH for Hydrologic 

Category A and 1033 trees per hectare for Hydrologic Category B. The midstory layer 

also had differences in species composition among Hydrologic Categories, with 

Hydrologic Category A mostly comprised of Acer spp., Fraxinus spp., Quercus spp., and 

Taxodium distichum, Hydrologic Category B consisting primarily of Acer spp., Fraxinus 

spp., with some Morella cerifera and Nyssa spp., and Hydrologic Category C containing 

individuals of Acer spp., Cephalanthus occidentalis, Morella cerifera, and Triadica 

sebifera, although at relatively lower total densities than the other two categories.
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Table 2.2. Vegetation summary data by site. Sites are listed in order of increasing mean seasonal water level.  

Site Category 
Canopy 
Cover 
(%) 

Overstory 
Basal 

Area/Ha 
(m2) 

Midstory 
Tree 

Density/
Ha 

No. of 
Woody 
Species 

Top 3 Overstory Species1 
(Importance Value) 

Top  3 Midstory Species1 
(Relative Density) 

CRMS 0324 A 96.8 34.7 1407 10 
ACSP (32.8), TADI 
(28.2), NYSP (14.0) 

ACSP (69.6), ULSP 
(14.4), CEOC (4.0) 

STM-01 A 96.7 31.4 1045 5 TADI (82.3), TRSE (13.7) 
TRSE (56.1), ACSP 
(24.4), CEOC (9.8) 

CRMS 0046 A 82.7 49.3 1582 8
NYSP (50.8), TADI 
(25.4), FRSP (11.7) 

FRSP (73.4), ACSP 
(13.8), ILSP (6.4) 

BLR-01 B 65.5 18.5 1452 6
NYSP (79.1), TADI 
(12.8), ACSP (4.1) 

ACSP (79.0), FRSP 
(15.8), QUSP ( 3.5) 

GPT-02 B 95.1 38.8 713 7 
TADI (34.6), NYSP 
(31.6),  ACSP (22.2) 

ACSP (89.2), FRSP (3.6), 
QUSP (3.6) 

CRMS 5452 B 77.9 44.5 1983 7 
NYSP (66.3), TADI 
(29.4), ACSP (3.9) 

ACSP (43.7), NYSP 
(17.6), MOCE (16.8) 

CRMS 0063 B 92.3 46.4 648 6 
NYSP (39.1), TADI 
(26.6), ACSP (18.1) 

FRSP (77.1), ACSP 
(12.5), MOCE (8.3) 

641-01 B 93.2 35.7 26 3 NYSP (66.8), TADI (33.2) COFO (100) 

1Not all species are listed, only the top 3 by Importance Value (overstory) and relative density (midstory). Species code: ACSP = Acer spp., CEOC = Cephalanthus occidentalis, 
COFO = Cornus foemina, FRSP = Fraxinus spp., ILSP = Ilex spp., MOCE = Morella cerifera, NYSP = Nyssa spp. (only Nyssa aquatica and Nyssa biflora), QUSP = Quercus 
spp., SANI = Salix nigra, TADI = Taxodium distichum, TRSE = Triadica sebifera, ULSP = Ulmus spp. 
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Table 2.2 (continued) Vegetation summary data by site. Sites are listed in order of increasing mean seasonal water level.  

Site Category 
Canopy 
Cover 
(%) 

Overstory 
Basal 

Area/Ha 
(m2) 

Midstory 
Tree 

Density/
Ha 

No. of 
Woody 
Species 

Top 3 Overstory Species1 
(Importance Value) 

Top 3 Midstory Species1 

(Relative Density) 

SJM-01 B 89.6 25.5 2242 7
NYSP (46.8), TADI 
(28.0), ACSP(17.1) 

FRSP (59.1), ACSP 
(31.8), TRSE (6.8) 

GPT-01 B 93.9 29.5 1096 5
NYSP (55.6) TADI (16.6) 

ACSP (13.5) 
ACSP (69.8), FRSP 
(20.9), NYSP (9.3) 

HCN-02 B 77.1 24.3 102 5
NYSP (57.4), TADI 
(34.8), ACSP (4.3) 

CEOC (50.0), ACSP 
(25.0), FRSP (25.0) 

BYP-01 C 96.6 38.7 0 2 TADI (70.4), NYSP (29.6) None 

CRMS 0403 C 92.6 64.9 143 3 TADI (61.3), NYSP (38.7) TADI (66.7), ACSP (33.3) 

641-02 C 58.6 16.1 26 3 NYSP (72.4), TADI (27.6) MOCE (100) 

HCN-01 C 94.5 34.8 866 4
NYSP (61.2), ACSP 
(18.1), TADI (13.6) 

ACSP (79.4), FRSP (17.6) 

BYI-01 C 94.1 24.7 764 5
NYSP (59.7), TADI 
(31.4), SANI (4.5) 

CEOC (93.3), ACSP (3.3) 
SANI (3.3) 

641-03 C 77.1 22.9 153 5
NYSP (55.5), TADI 
(40.7), ACSP (3.8) 

MOCE (83.3), TRSE 
(16.7) 

1Not all species are listed, only the top 3 by Importance Value (overstory) and relative density (midstory). Species code: ACSP = Acer spp., CEOC = Cephalanthus occidentalis, 
COFO = Cornus foemina, FRSP = Fraxinus spp., ILSP = Ilex spp., MOCE = Morella cerifera, NYSP = Nyssa spp. (only Nyssa aquatica and Nyssa biflora), QUSP = Quercus 
spp., SANI = Salix nigra, TADI = Taxodium distichum, TRSE = Triadica sebifera, ULSP = Ulmus spp. 
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2.5 Discussion

Hydrology. Sites were easily separated into apparent Hydrologic Categories or 

RCC classes using daily water levels from one year of near-normal conditions. Our 

sampling took place in an area that experienced 1268 mm of rainfall from April-October 

2014, a somewhat higher than average growing season rainfall based on the previous 20 

year average (1001 mm SD ± 215). Sites classified as Hydrologic Category A were 

flooded for significantly fewer cumulative days above 0 cm and 15 cm during the 

growing season than sites classified as Hydrologic Categories B or C. This distinction is 

important for differentiating between sites that have the potential to support natural 

baldcypress regeneration and those that do not (Chambers et al. 2005). Newly-germinated 

baldcypress seedlings have shown poor survival following submergence of 45 days or 

greater (Souther and Shaffer 2000). If seedlings are able to germinate during dry periods 

and grow to 15 cm or greater in height before water levels reach 15 cm or higher, they 

could be expected to have high survival in the hydrologic conditions observed on 

Hydrologic Category A sites, which had a mean of 39 cumulative days submerged above 

15 cm (Sun 1995).  

The threshold for adequate performance of planted seedlings is critical for 

differentiating between sites that have the potential to support artificial baldcypress 

regeneration and those that do not (Chambers et al. 2005). Sites classified as Hydrologic 

Categories A and B were flooded for significantly fewer days above 30 cm, 45 cm, and 

60 cm during the growing season than sites classified as Hydrologic Category C. Ease of 

planting and cost-effectiveness make bare-root 1-0 baldcypress seedlings the most 

commonly used for artificial regeneration purposes. In one study, planted 1-0 baldcypress 
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seedlings had 55 percent survival following just 20-29 days of submergence and only 31 

percent following 30-45 days submerged (Bull 1949). Other studies have reported poor 

survival following 90 days of submergence (Souther and Shaffer 2000), and substantial 

reductions in height growth of surviving seedlings with just 30 to 60 days of 

submergence (see Chapter 1). Seedling height relative to flood water levels seems to be a 

very important aspect of seedling survival. Nursery-grown, bare-root 1-0 baldcypress 

seedlings are typically 45-60 cm in height. Planted baldcypress seedlings 45-60 cm in 

height at the start of the growing season are capable of high first-year survival and good 

height growth under hydrologic conditions observed on Hydrologic Category A site, 

which had a mean of 4 cumulative days submerged above 45 cm, and on Hydrologic 

Category B sites, which had a mean of 14 cumulative days submerged above 45 cm and 

only 6 cumulative days submerged above 60 cm. However, the survival potential would 

be very low for the same seedlings if planted on Hydrologic Category C sites, where I 

observed a mean of 133 cumulative days submerged above 45 cm and 23 cumulative 

days submerged above 60 cm. In addition, even though submerged seedlings can have 

good survival following 60 cumulative days of submergence, height growth declines 

rapidly following just 30 cumulative days of submergence (see Chapter 1). 

 Vegetation. The effect of increasing flood depth and duration drives different 

attributes of forest structure and composition in cypress-tupelo forests. A site’s 

hydrologic regime does not seem to have a significant effect on overstory basal area and 

canopy cover on sites dominated by cypress and/or tupelo, as many sites were similar in 

these attributes regardless of Hydrologic Category. The nearly closed canopy would be 

common for established stands without recent substantial disturbance and sites without 
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degradation from long-term deep flooding or increased salinity (deGravelles et al. 2014). 

However, a closer look at the species composition, and specifically the number of 

different species, reveals much about the hydrologic influence. The lesser flood-impacted 

sites in Hydrologic Category A included individuals of several different oaks (Quercus 

spp.), elms (Ulmus spp.), and Chinese tallow (Triadica sebifera), even though these 

species did not have high importance values. Although the oak species observed 

(Quercus laurifolia, Quercus michauxii, Quercus nigra, Quercus texana) are considered 

flood tolerant relative to other oak species, they are still not tolerant to prolonged 

inundation during the growing season, especially compared to baldcypress (Pezeshki and 

Anderson 1997), and the same can be said for elms (Ulmus spp.) (Hook 1984). Conner et 

al. (1981) saw similar composition in a water-controlled swamp, with baldcypress and 

water tupelo comprising over 50 percent of the basal area (trees > 2.5 cm DBH) but with 

high densities of maple and ash species and a small oak component. The overstory layers 

on Hydrologic Category B sites lacked oak and elm species but supported a higher 

number of tupelo (Nyssa spp.), baldcypress, ash (Fraxinus spp.), and maple (Acer spp.) 

stems. Conner et al. (1981) reported baldcypress and water tupelo comprised 94 percent 

of the basal area (trees > 2.5 cm DBH) in a semi-permanently flooded swamp. 

Hydrologic Category C sites were even less species-diverse in the overstory, composed 

almost entirely of tupelo and baldcypress stems, which are the two overstory tree species 

most adapted to tolerate conditions resulting from prolonged inundation (Hook 1984, 

Theriot 1993). Sites containing a component of lesser flood tolerant species, such as oaks 

or elms, in the overstory layer are likely to have a hydrologic regime that is classified as 

Hydrologic Category A. Sites consisting almost entirely of cypress and tupelo are more 
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likely to have a hydrologic regime classified as Category B or C. In our study, the 

overstory composition difference alone did not clarify the division between Hydrologic 

Categories B and C, suggesting that both overstory baldcypress and tupelo can continue 

to survive under both sets of hydrological conditions for lengthy intervals. 

Even if overstory species continue to exist for perhaps decades under 

Hydrologic Category C conditions, there may be changes that occur in the midstory and 

understory that differentiate Hydrologic Category B and C sites. For the sites included in 

our study, midstory density and structure were greatly influenced by flood depth and 

duration. Sites classified under Hydrologic Categories A and B had high midstory stem 

densities (1334 and 1033 TPH, respectively), while Hydrologic Category C sites had 

much lower midstory stem densities (325 TPH). This is due to the fact that sites in 

Hydrologic Category A have longer and more frequent periods where soil or substrate is 

exposed during the growing season, allowing germination and adequate growth to avoid 

submersion (Keeland and Conner 1999). Sites in Category B, even though they are nearly 

permanently flooded, have relatively shallow water levels and feature enough 

microtopographic variability to have small areas exposed during low-water events or dry 

years for seedling germination and establishment. Hydrologic Category C sites had deep, 

prolonged flooding, preventing substrate exposure and not allowing baldcypress and 

tupelo to germinate and become established before the end of the growing season. Conner 

et al. (1981) reported a lower tree (>2.5 cm DBH) density (943 TPH) in an impounded, 

permanently flooded Louisiana swamp compared to higher tree densities in both a water-

controlled swamp (1564 TPH) and a natural swamp (1303 TPH) that experiences natural 

flooding and drawdown cycles. 
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 Flood depth and duration impacts midstory seedling establishment. Although 

CRMS vegetation data did not indicate the rooting origin for trees measured in the 

midstory layer, I differentiated whether the trees on our study sites were rooted in the 

soil/substrate, on elevated structures such as old stumps, or on coarse woody debris 

between closely-spaced cypress knees, or even on soil between closely-growing mature 

trees (i.e. hummocks). Hydrologic Categories B and C sites were flooded for significantly 

longer periods than Hydrologic Category A sites. Six of the eight Category B sites were 

flooded above an elevation of 15 cm for more than half the growing season. Four of the 

eight Hydrologic Category C sites were flooded above an elevation of 30 cm for the 

entire growing season, above 45 cm for better than half the growing season, and above 60 

cm for at least a portion of the growing season. On the Hydrologic Categories B and C 

sites that I measured, 64 percent of midstory stems in Category B and 69 percent of 

midstory stems in Category C were rooted on elevated structures, seemingly because 

those were the only areas intermittently exposed long enough to support seedling 

germination and growth. Huenneke and Sharitz (1986) emphasized the importance of 

microtopography within cypress-tupelo swamps by showing distinct patterns of woody 

seedling germination on different types of elevated substrate. Drummond red maple (Acer 

rubrum var. drummondii) appeared to be very proficient at rooting on elevated structures 

(Figure 2.2). Buttonbush (Cephalanthus occidentalis) was nearly the only midstory 

species on the study plots observed growing in the soil or substrate (as opposed to rooted 

on elevated structures) in relatively deep standing water. Buttonbush has the ability to 

germinate in standing water (DuBarry 1963). All other midstory tree species observed on 

the Hydrologic Category C sites were rooted on elevated structures. Conner et. al (1981)  
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current changes and not the long-term trends in hydrology that many woody species do 

(Theriot 1993). However, some general observations can be made about conditions 

observed within apparent Hydrologic Categories during the growing season covered by 

this study. Small, floating aquatic species such as duckweed (Lemna spp.) and salvinia 

(Salvinia spp.) were generally not observed on Hydrologic Category A sites. STM-01, a 

Category A site, was almost completely covered with savannah panicgrass (Phanopyrum 

gymnocarpon), which was likely present because of the heavy-clay soil on the site and 

the lack of a defined organic soil layer.  

Emergent aquatic vegetation was not as prolific in Hydrologic Category C sites 

as it was in Categories A and B. Floating aquatic vegetation was observed on most 

Hydrologic Category C sites. However, there was variability among sites in Hydrologic 

Category C in the type of floating vegetation present. Sites 641-02 and 641-03 were 

characterized by dense, floating mats of herbaceous vegetation primarily composed of 

Bidens and Hydrocotyle spp. (Figure 2.3). These “flotants” typically occur in open pools 

of freshwater marshes and have been theorized to act as a successional pioneer 

community before transitioning to shrub-dominated vegetation and eventually climaxing 

with cypress-tupelo forests (Russell 1942, Huffman and Lonard 1983). In the case of our 

sites, their presence may be indicative of sites transitioning back to marsh or open water. 

The direction of change may be uncertain in some cases, but open canopies of overstory 

mature cypress and tupelo already exist, and the floating vegetation seems to be an 

intruder where the canopy is breaking up.  

BYP-01, located in the Atchafalaya Basin, is influenced by deep, prolonged 

flooding during the middle of the growing season followed by a dry period in late  
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Hydrologic Category A Sites (RCC I): tend to have vegetation composed of 

cypress or tupelo but containing small to moderate levels of lesser flood 

tolerant species, such as oaks or elms, in the overstory layer. The midstory 

layer is relatively dense with the majority of the midstory trees rooted in the 

mineral soil. These sites have the potential to support natural baldcypress 

regeneration unless a recent change in hydrologic conditions (increased flood 

depth or duration) has occurred. 

 

Hydrologic Category B Sites (RCC II): tend to be composed primarily of 

cypress and tupelo in the overstory layer. The midstory layer is moderately 

dense with a high percentage of the midstory trees rooted on elevated substrate. 

However, many of the midstory stems will not likely contribute to overstory 

basal area without drier conditions. These sites have the potential for 

supporting artificial baldcypress regeneration, but natural regeneration success 

is highly unlikely unless a recent change in hydrologic conditions (increased 

flood depth or duration) has occurred. Unless drained, these sites will be 

flooded to some degree throughout more than half of the growing season and in 

some sites all of the growing season. 

 

Hydrologic Category C Sites (RCC III): Until permanent flooding begins to 

degrade the overstory and reduce tree basal area, the overstory tends to consist 

almost entirely of cypress and tupelo. The midstory layer is relatively sparse, 

but when some midstory is present, a high percentage of the trees are rooted on 

elevated substrate. In all likelihood, these sites have little to no potential for 

supporting either natural or artificial baldcypress regeneration, since even the 

overstory will eventually succumb to the deeper water levels. Many, but not all, 

of these sites will have flood waters during the entire growing season. Caution 

must be taken as some sites are deeply flooded (several meters deep) in the 

middle portion of the growing season, preventing successful seedling 

establishment.  
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Table 2.4. General vegetation attributes and regeneration potential of cypress-tupelo forests for each Hydrologic Category or apparent 
SWG Regeneration Condition Class. 

Vegetation 
Attribute 

Hydrologic Category A 
(RCC I) 

Hydrologic Category B 
(RCC II) 

Hydrologic Category C 
(RCC III) 

Overstory 
Species 

Composition 

Mostly cypress and/or tupelo, with 
a minor component of oaks, elms, 
and other bottomland hardwoods 

Primarily cypress and/or tupelo, 
often with a minor component of 

maples and/or ashes 
Primarily cypress and/or tupelo 

Midstory Tree 
Density 

Dense Dense to moderately dense Sparse 

Midstory Tree 
Rooting Origin 

Mostly in mineral soil Mostly on elevated structures Mostly on elevated structures 

Regeneration 
Potential 

Natural and artificial Artificial only Neither natural or artificial 
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 These new tentative site characterizations of vegetation supplement or expand 

upon the SWG RCC definitions by establishing vegetation-based thresholds to aid in the 

evaluation of a site’s baldcypress regeneration potential where records of hydrology are 

lacking. These stand characteristics help effectively define how cypress-tupelo forests 

transition in vegetation structure and composition from least flood impacted to most flood 

impacted sites. However, the information is only for freshwater swamps and based only 

on first-year data.  

 Sites within the same Hydrologic Category were considerably inconsistent in 

some hydrologic and vegetation attributes that were either not measured in this study or 

in traits that were difficult to quantify. Sites within a Hydrologic Category often differed 

in flood timing, intensity, and water quality. These flood characteristics are mostly 

attributable to the nature of the flood inputs (i.e. impounded sites primarily fed by local 

rainfall vs. sites directly connected to riverine or lacustrine systems fed with waters 

higher in sediment, nutrients, and dissolved oxygen). The mean overstory basal area per 

hectare was highly variable and midstory stem density was different between categories, 

yet there was a lot of variation among sites within the Categories. Sites with recent 

changes in hydrology could contribute to discrepancies in expected vegetation structure 

and composition, especially in Hydrologic Categories B and C where the present 

vegetation would not have germinated or developed under the present conditions. To 

effectively assess a site’s regeneration potential, it is critical to understand that present 

hydrologic conditions are sometimes much different than the conditions that existed 

when a stand was established. It is also important to understand that current conditions 

can and will change at some point in the future (DeLaune et al 1987). Natural resource 
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professionals must also recognize that climatic and hydrological conditions are often very 

dynamic from year to year. Although I was able to observe a wide range of hydrologic 

conditions among several different cypress-tupelo forest sites, I did not fully test the 

range of conditions at either the drier or wetter ends of the flood spectrum. Preliminary 

site visits to several different areas showed that drier sites containing individuals of 

cypress and/or tupelo were usually dominated by lesser flood tolerant species. Similarly, 

areas that had deeper water levels than the sites used in this study, did not have an 

adequate number of trees to be considered a forest. The latter were likely once 

Hydrologic Category C sites that have, for all practical purposes, completed the transition 

to either open water or marsh. 

 It is important to note that even though cypress and tupelo are most often found 

in swamps and similar hydrologic conditions, they are typically growing along a gradient 

in hydrologic conditions across their distribution in southeast Louisiana.  Although, I 

have classified these sites as Hydrologic Category A, B or C, the actual sites or portion of 

sites are, from a hydrological perspective, transitioning or grading from one to another 

and boundaries are most often not actually distinct. There are overlaps in physical and 

biological attributes within and among sites.  Also, site attributes are never static in the 

long-term, but always transitioning in some way.   

2.6 Conclusions 
 

 Certain similarities of conditions exist among cypress-tupelo forests within the 

hydrologic range of seasonally flooded to permanently flooded sites, such as dominant 

species and flooding during some portion of the growing season. However, 

characteristics such as overstory species composition used in conjunction with midstory 
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tree density and rooting origin of cypress-tupelo forests appear to be indicative of the 

site’s hydrologic regime. Furthermore, although species diversity is relatively low across 

cypress-tupelo sites, the number of species declines with increasing flood depth and 

duration. More importantly, low overstory species diversity coupled with the lack of a 

well-developed midstory possibly serves as an indicator of sites that will not regenerate 

baldcypress naturally and a have a low potential for artificial regeneration success.  

The species composition of sites included in this study and their corresponding 

hydrologic regimes, coupled with the low occurrence of baldcypress seedlings and 

saplings reveals a very specific set of hydrologic conditions that will allow naturally 

regenerated baldcypress seedlings to both thrive without competition from less flood 

tolerant species and become established to withstand deep flooding and avoid prolonged 

inundation. Consequently, a large acreage of cypress-tupelo forests across south 

Louisiana has the potential to regenerate by artificial means only or has little to no 

regeneration potential at all (Conner et al. 1986). Therefore, when it comes to predicting 

the success of planted baldcypress seedlings, it is critical for the future of coastal forests 

to be able to differentiate between areas that have artificial regeneration potential and 

areas that are not suitable for either natural or artificial regeneration. Employing an 

approach similar to the one proposed by Faulkner et al. (2009) to approximate estimation 

of the locations and amount of land area categorized by RCC or Hydrologic Category 

using remote sensing, combined with the methodology outlined in this study to categorize 

areas using vegetation sampling could create a high-resolution assessment of the 

regeneration potential for cypress-tupelo forests across south Louisiana.  
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While this study has proposed a hypothetical way of identifying the apparent 

Hydrologic Categories or RCCs based on current vegetation, it is based only on one year 

of hydrologic data, dominated by one aspect of flooding (cumulative days flooded at 

specific depths). Additional years of survival and growth data are needed to confirm or 

solidify the vegetation variables and change overtime. Long-term seedling establishment 

is critical. Still, other aspects of flooding need to be tested. Many more sites need to be 

added and years of variable flooding need to be tested.  Cypress-tupelo forests are very 

complex systems due to elements associated with frequent and prolonged flooding, and 

we still do not fully comprehend how various factors contribute to the manner in which 

these forests function. Further research is needed to isolate and quantify the numerous 

hydrologic factors and processes controlling vegetation structure and composition and to 

gain a better understanding of how the matrix of hydrologic factors and processes 

influence stand dynamics in cypress-tupelo forests. This study is, at least, a first step 

towards improving the management and sustainability of cypress-tupelo forests. 
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APPENDIX 

Figure 1. Cumulative days flooded above benchmarks ranging from 0 cm to 75 cm for 
individual sites classified in their respective Hydrologic Categories. 
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